
AUTHORING SYSTEM FOR FLEXffiLE AND RAPID DEVELOPMENT OF 
ON SCREEN DISPLAY (OSD) APPLICATIONS 

Mohan K Mohankumar and David M Ihnat 
Network Systems Group, Zenith Electronics Corporation. 

Abstract 

The On Screen Display (OSD) used 
in Zenith's Cable TV set-top boxes utilize an 
Authoring System to allow development of 
control screens, data structures and state 
definitions. These, when combined with 
information provided from the RDBMS, 
define its display and behavior capabilities. 

This paper provides an overview of 
Zenith's ScreenPlay(TM) Authoring System 
used for the development of downloadable 
dialogs. Also discussed are the components 
of the Authoring System with respect to the 
modular, object-oriented design, and the 
advantages and limitations of the 
implementation. 

INTRODUCTION 

Within the context of the cable set
top box environment, an Authoring System 
can be defined as a software system that 
helps developers create multimedia programs 
or presentations without requiring the 
painstaking skills involved in traditional 
programming[l]. Today's set-top boxes, in 
addition to enabling scrambling and 
authorizing of video signals, play a key role 
in providing for interactive TV and 
information services. An interactive OSD 
(On Screen Display) application, once 
downloaded to the set-top box, controls the 
display and behavior of the box, depending 
on keystrokes from the viewer and resulting 
events. Some of the key features provided by 
the application, (also referred to as a Dialog 
in the subsequent sections), are such 
capabilities as scanning the program listings, 
making one-button selections from the 

1995 NCTA Technical Papers -184-

listings for display or later recording, etc. 
The OSD application may be designed with 
many different look and feel user interfaces, 
as required by the cable TV MSOs. An 
Authoring System that is user-friendly and 
flexible is needed to rapidly develop and 
maintain the dialogs. 

The remainder of this paper provides, 
in order, an overview of the design and 
implementation of the Screenplay Authoring 
System. Key advantages and limitations of 
the project as implemented are described. 
This is followed by sample screens. 
Conclusions are then drawn with respect to 
the experiences of the developers in this 
effort. 

DESIGN AND IMPLEMENTATION 

Design Requirements 

As the set-top boxes are provided 
with greater resources, such as a faster 
microprocessor, more memory, and more 
complex support circuitry, the capabilities of 
the software that drives them must grow 
with it. When the design process was started, 
it was decided that the following criteria 
were basic to a successful Authoring System 
(AS): 

• Ease of Use. The dialog development 
environment must be easy to learn and 
use, requmng only rudimentary 
programming skills. 

• Standard GUI. The AS must provide a 
Graphical User Interface (GUI) that 
complies with the Common User Access 
(CUA). 



• Modular Dialog Development. 
Provision must exist to permit definition 
of both internal functions and access to 
external libraries. 

• Procedural Language. The AS must 
provide support for procedural actions 
for data and screen manipulation. This is 
accomplished via a C-like script 
language. 

• Ease of Maintenance. It must be easy to 
maintain the dialogs as well as the 
authoring tools. 

• External Dynamic Data Access. 
Provision must exist to permit reference 
to external dynamic data when 
developing a dialog. 

• Field Maintainability. It must be 
feasible to hand over the dialog 
maintenance to the operators at the 
head end. 

• Authoring System Modularity. The 
Authoring System components must 
exhibit a high degree of modular design 
to ease future enhancement. 

Implementation 

The Authoring System is 
independent of any other component of the 
set-top box control system. As shown in 
figure 1, it has three active components, the 
Dialog Editor (DE), the Dialog Compiler 
(DC), and the Dialog Assembler (DA). 
These three components may be 
independently executed on different target 
platforms, if necessary[2]. Commonly, the 
DE is the only visible component~ the DC 
and DA are transparent to the users. Dialog 
developers are only concerned with 
producing the dialogs, not with how the 
dialog gets translated to a form that the set
top boxes will understand. 

The Authoring System produces, as 
its end product, a data store which describes 
the static component of the dialog~ that is, 
the display and behavior of all data 

transmitted to the controller portion of the 
system. This data store is in a format suitable 
for input to the download process, which is 
part of the Information Gateway System. 
The download preparation process then 
combines it with the dynamic data from the 
SQL database(s) to produce a fully 
functional dialog with static and dynamic 
components, that is ready to be transmitted. 

Authoring 
System 

Dialog 
Editor 

• Support 
Libraries 

Dialog 
Compiler Common File 

• Format (CFF) 

Hand 
Generated ~ Dialog 
Assembly Assembler 
Code 

Compiled Static 
Dialog 

Figure 1. Authoring System 

Dialog Editor 

The Dialog Editor is a WYSIWYG, 
('What-you-see-is-what-you-get'), screen
oriented editor that enables the user to 
describe an interactive session in terms of 
multi-screen forms, display and input fields, 
and actions to be taken on user input or in 
response to events in the decoder or 
resulting from downloaded dynamic data 
and/or commands from the headend. The 
actions are expressed in a script language 

1995 NCTA Technical Papers -185-



with a syntax reminiscent of 'C'. The output 
of this an editing session is a Dialog file. 

At the time of the initial design, 
MS-Windows had established a widely 
installed base capable of running on minimal, 
standardized IBM personal computers; this 
drove the decision to implement the Dialog 
Editor as an MS-Windows application. 
Originally the entire Authoring System was 
implemented as a standard 16 bit application. 
Due to growing complexity and capabilities 
of authored dialogs, it has become necessary 
to convert the environment to a full 32-bit 
model. The eventual growth path is to 
convert to a full Presentation Manager (PM) 
application under OS/2. 

Internally, each dialog consists of 
multiple sections, which in turn consist of 
multiple forms, in an hierarchical 
relationship. Each form is displayed to the 
dialog author as a graphic expression of 
what the viewer will see on the television 
screen, and set of transitions and/or actions 
that will be executed for each of the buttons 
on the decoder, or for desired events in the 
decoder, such as timers. The displayed form 
is created, designed by, and fully under the 
control of, the dialog author. The forms are 
treated as objects that consist of the display 
data (picture and literals), and the behavior, 
that is, the actions associated with each input 
key stroke or event. The user can define the 
action sequences for each of the input keys, 
as well as for predefined classes of events. 
For instance, this provides the flexibility of 
defining a single key to tune to a specific 
channel, start recording or any other actions 
that may be required; or to set an inactivity 
timer to return to a viewing state. 

Due to the hierarchical nature of the 
dialog, sections, and forms, default behavior 
may be specified at each level, with local 
(i.e., form) responses differing from that 

1995 NCTA Technical Papers -186-

defined at a higher level (i.e., section or 
dialog-wide). 

Each dialog may have multiple action 
routines. An action routine is a common 
sequence of action statements. The action 
sequences can be in the form of the script 
language, which gets translated by the DC, 
or, it can have the native assembly source 
embedded for tasks too complicated to easily 
express in scripting, or to permit 
performance optimization. Despite the fact 
that use of embedded assembler code 
requires thorough knowledge and 
understanding of the assembler and decoder 
architecture, this capability provides the 
knowledgeable user with a great deal of 
flexibility. 

A dialog can have internal action 
routines that are visible only to that dialog-
either attached to a specific display object, or 
defined as callable procedures. External 
assembler action routines may be imported 
via prototype definitions. (Future versions 
of the DE will be capable of 
importing/exporting script routines.) This 
allows the creation of common libraries of 
useful routines usable by multiple dialogs, 
reducing the per-dialog unique development 
necessary for ongoing maintenance and 
authoring. 

Dialog Compiler 

The Dialog Compiler accepts as input 
the binary data store created by the DE. It 
then reduces actions to executable code 
sequences, resolves the tokenized global and 
local data references from the intermediate 
form to absolute dataset type and field 
references, produces the final state transition 
dataset records, and emits an ASCII Dialog 
Assembler output data store. Any necessary 
information pertaining to external data 
references are provided by the Record Set 
Definition Export (RSDE) file. 



The Dialog Compiler is wholly 
written in 'C' as a portable application-
although currently an OS/2 application, it 
was successfully compiled and executed on 
UNIX platforms during its development. Its 
execution platform, and invocation, is usually 
totally transparent to the user. This is 
accomplished via a command interpreter 
script that compiles and assembles a dialog 
source file in a single invocation, much in the 
way the early 'cc' command in UNIX was 
implemented. This shell script invokes the 
appropriate components depending on the 
command switches, passing options along to 
the correct target component as necessary. 

Dialog Assembler 

The Dialog Assembler accepts as 
input ASCII files expressed in terms of the 
Dialog Processor Assembler Source. This is 
in the form of a traditional assembler, e.g., 
opcodes, operands, labels, pseudo-ops, etc. 
Relocatable and link-editable formats are 
not supported; all references must be 
satisfied by local declarations or globals 
provided from the RSDE data. 

It is implemented as a one-pass non
relocatable assembler; as such, all definitions 
and references must be contained in the 
primary and included files at assembly time. 
It supports an indefinite number of forward 
references, however, which are resolved via 
a patch look-up scheme as opposed to the 
more traditional two-pass approach. 

Input to the DA is either the output 
of a DC execution--which is therefore the 
result of a DE session--or explicitly coded 
assembler source. If the latter, it is the 
responsibility of the author to provide for 
any external definitions required as described 
in the RSDE file. Explicitly coded assembler 
source requires thorough knowledge and 

understanding of the assembler and decoder 
architecture. 

Output is in the form of a binary file 
suitable for processing by the Download 
planning and transmitting components of the 
Information Gateway. 

Support Libraries 

The three components DE, DC and 
DA share the information concerning the 
dialog and data. As a result, there are well
defined in-memory and data store structures 
for each of these interface requirements. 
These interface definitions are expressed via 
common support routine libraries provided 
to simplify processing of shared data and to 
assure identical views of such data. 

The Common File Format (CFF) 
library allows creation of arbitrary data 
sections within a binary file; the contents of 
each section is unknown by, and irrelevant 
to, the library manipulation routines. Thus, 
this mechanism provides an operating-system 
independent program-level means of 
archiving information that is logically related, 
but must be handled in discrete separate sets. 

The routines provided by the CFF 
library, as might be expected, are oriented to 
providing easily-used performance of the 
following tasks: 
• Creating the CFF file 
• Retrieving and manipulating existing file 

sections and data 
• Adding and deleting file sections 
• Providing information about the current 

file status and contents 

Dynamic Data 

The RSDE library provides the 
callable routines necessary to extract the data 
associated with various fields, and to 
construct the ASCII datastore which permits 

1995 NCTA Technical Papers -187-



export of this information to the Dialog 
Editor. It also provides support routines to 
import data from this file into 'C' structures, 
and to populate the DE symbol table. 

Static 
Dialog 

Data 
Design 

Download 
Planner 

Functional 
Dialog 

To Set-top 
via Gateway 

Figure 2. Preparation and Download 

Data Design has the information on 
the dynamic data recordsets. Download 
planner, which is a part of the downloader, 
combines the static dialog created by the 
Authoring System, with the dynamic data 
and produces a downloadable fully 
functional dialog as shown in figure 2. The 
packet sequences are also prioritized. 

Authoring System in the Headend 

The Authoring System is 
implemented as a sibling to the Information 
Gateway System at the cable plant headend, 
as shown in figure 3. Information Gateway 
System is the main link for the Authoring 
System. Detailed description of the 
Information Gateway System is beyond the 
scope of this paper. 

Other data sources typically include 
program guide data and sports and weather 
information. Once a dialog is created by 
using the Authoring System, the compiled 
output is sent to the Gateway, which then 
gets the dialog prepared and starts 
transmitting to the set-top boxes. 

1995 NCTA Technical Papers -188-

As and when the Gateway receives 
any new data, which may be an entirely new 
dialog or new dynamic data, the downloader 
transmits the incremental update, which is 
totally transparent to the user. That is, the 
subscriber of the set-top box is not aware of 
when and how the data is received. The 
Gateway also provides the capability to 
altogether reset the set-top boxes and start 
afresh with a new dialog. 

Billing PC Based 
System .... Controller ........ 

Headend 

~ 
Equipment 

Other Gateway 
Data ...... System ~ 

Sources 

Authoring 
System 

Figure 3. Typical Head end 

ADVANTAGES AND LIMITATIONS 

As with any software system, the 
experience of development and use has 
reinforced some of the early design 
decisions, and pointed out some of the 
oversights and shortcomings in others. 

Advantages 

• Customer Acceptance. We have had 
excellent response from our customers 
who are currently using the Authoring 
System. 



• Rapid Prototyping. As hoped, even 
without underlying external data for 
dynamic displays, the tools have proven 
useful and usable by Sales or Marketing 
personnel. Non-programmers can, and 
do, create dialogs using their laptops 
running MS-Windows or OS/2 without 
having to compile and assemble the 
dialogs. These may be viewed for 
acceptance and modification by 
customers, and later compiled, 
assembled, and downloaded for on-set 
revtew. 

• Reduction in Required Developers Skill 
Sets. Prior to the introduction of the 
Authoring System, dialog developers 
were required to be software developers. 
Experience has shown that personnel 
with minimal traditional software 
development experience can successfully 
produce functional dialogs. Despite 
some concerns that the state-driven 
model of the set-top decoder might 
present problems, this has not proven to 
be an obstacle. And for those tasks 
requiring greater skill sets, fewer skilled 
developers are required to intervene. 

• Flexibility. The ready ability to define the 
keys to suit the needs of the headend, of 
different customers, and even of different 
dialogs for the same customer, has 
proved to be an easily exploited and 
useful capability. Rapid modification and 
extensibility of the dialog, even to the 
extent of major logic redefinition, has 
proved to be a benefit of the system. 

Limitations 

• Hardware Dependence. Despite the 
intention of virtualizing the 
interrelationships between hardware and 
the Authoring System, there are still too 
many dependencies at the Dialog Editor 
level on underlying capabilities of the 
display hardware. 

• Need expertise in MS-Windows API to 
maintain the Editor. The time needed to 
develop, debug, and modify the MS
Windows code proved to be one of the 
greatest bottlenecks during the 
development effort; plus, skilled MS
Windows programmers are at a premium. 
In retrospect, a solid Gill application 
generator with support for multiple 
platforms would have reduced the 
workload significantly. 

• No support for relocatable and link 
editable formats. This was designed as a 
follow-up capability to the basic tool; 
'hooks' were built into the initial release 
to facilitate this. Development of the 
first few dialogs pointed out the 
importance of this capability; it should 
have been an integral feature of the initial 
release. 

• Script Language Implementation 
Incomplete. In a common problem with 
object oriented systems allowing 
attachment of script or code to objects, 
it's difficult for authors unfamiliar with a 
dialog to garner a complete picture of the 
actions embedded in the dialog without 
extraction and printing tools. We realized 
the lack of this feature and plan to 
implement it in the upcoming version. 

• Lack of Emulation. The debugging 
environment received far too little 
attention in the original plan. Particularly 
painful in its absence is an emulation 
environment which would permit 
debugging of complex dialogs without 
assembling the panoply of equipment 
necessary to support a functional 
download of static and dynamic data. We 
plan to overcome this by adding an 
emulation feature as part of the 
Authoring System. 

1995 NCTA Technical Papers -189-



... 

SAMPLE SCREENS 

Definitions Iables 

,,,, ........ ., .... on: Section4 
rm: Recon:Hng 
on: Help 
rm: Help options 
rm: Menus 

Figure 4. Main Screen 

Figure 5. Form Editor 

1995 NCTA Technical Papers -190-



Figure 6. Actions for an Input Key 

Figure 7. User Remote 

Figure 4 shows the main screen of 
the Dialog Editor. It shows an opened dialog 
which has multiple sections and forms 
defined. The highlighted form MenuBB is 
being currently modified by the user. The 

user can design the screen display and define 
the transitions for the appropriate input keys. 
A transition is basically a sequence of actions 
to be executed for an input key. This may be 
as simple as switching to a different form or 
executing more instructions. 

Figure 5 shows the form editor which 
lets the user paint the screen as it is intended 
to be displayed on the TV. The screen area is 
divided into multiple cells. Each cell may 
have its own attributes, like background 
color, foreground color, blinking etc. Each 
form may have the video on or off Any lines 
on the form may selectively be enabled or 
disabled from being displayed. 

Figure 6 shows the action( s) to be 
taken on a particular input key on the 
remote, in this case, the Down Arrow key on 
the remote. Figure 7 shows the replica of the 
remote control. The user just has to click on 
any key when defining an action sequence 
for that key. 

1995 NCTA Technical Papers -191-



CONCLUSIONS 

The design approach is sound. An 
Authoring System should enable the users 
with less programming skills and minimum 
training, to create dialogs. The Screenplay 
Authoring System which keeps evolving, 
does achieve this primary goal. In this 
implementation process, a significant amount 
of custom software for the tools was 
developed , a major portion of which can be 
reused. In retrospect, the use of some off
the-shelf software packages would have 
saved some time and effort. 

It is obvious that the interactive TV 
is the wave of the future. It is going to be 
increasingly important to provide the tools 
that are easy and flexible to develop the 
interactive TV applications. It should be 
possible for marketing experts to decide 
what they want the TV screen to display 
without having to become technology 

1995 NCfA Technical Papers -192-

experts. By handing over the maintenance of 
these dialogs to the cable TV MSOs, the 
system provides them with the control and 
flexibility. 

ACKNOWLEDGMENTS 

Many thanks to our colleagues in the 
cable TV software engineering department 
for their review of the paper and valuable 
suggestions. Special thanks to Winston Tsao 
for his help in preparing the sample screens. 

REFERENCES 

[1] John Adam, "Interactive Multimedia", 
IEEE Spectrum, March, 1993, p23. 

[2] David M Ihnat, "Authoring System 
Component Overview", July, 1992, 
Unpublished Technical Memorandum. 


