
A GENERALIZED FRAMEWORK FOR CATV TRANSMISSION ON
FUTURE BISDN

Geng-Sheng (G.S.) Kuo

Department of Information Management, National Central University
Chung-Li, Taiwan 32054, R.O.C.

TEL: +886 3 4263086 FAX: +886 3 4262309

Abstract

The purpose of this paper is to
investigate and construct a generalized
framework for CATV transmission on future
BISDN by using some new concepts and

· mechanisms of UNIX. The software
developments have been made. In addition,
some future works have been pointed out
briefly.

INTRODUCTION

Clearly, the HDTV standard has
already been decided in all-digital format,
which is compatible with packet-oriented
BISDN technologies. Hence, the HDTV
technology can not only be used in broadcast
networks, but also be used on the BISDN [8].
Furthermore, the BISDN is going to impact
the CATV industry [10]. In the future,
internetworking will construct one network in
the world including BISDN, LANs, wireless
networks, and so on. Due to frequency
limitation on radio communications, BISDN
will play the role of basic backbone for future
communications.

The ultimate target of future
communications will be the universally
personal communications. Due to its
established subscribers, CATV industry will
keep the key role for information service
provider on BISDN for business
consideration. The information sources for a
variety of future CATV -based multimedia
information services will definitely be located
on BISDN. To provide real-time-oriented
CATV -based multimedia information services
to large volume of users simultaneously is a
must for the success of applications.

The purpose of this paper is to design a
generalized framework for BISDN-based
CATV information source (CATV server)
serving the information services to a large
volume of users simultaneously by using
distributed client-server architecture with
socket and fork mechanisms in UNIX.

A GENERALIZED FRAMEWORK

Up to now, it might be one of the best
solutions that the interfaces between the
CATV -based terminal system set or
multimedia workstation in user's side and
information sources elsewhere are based on
distributed client-server architecture [3]. In
[4], a new better mechanism for distributed
client-server architecture on the personal
communications networks than the ones
currently available has been designed. This
new mechanism associating with the
information management system designed in
[1, 2] could play the role of basic framework
for interactive customer control of future
personal communications services [4].

On existing computer networks, UNIX
is a well-accepted operating system. The
socket mechanism of 4.3BSD UNIX [5] [6] is
a special means of application program
interfaces to a variety of different
communication protocols [7]. The distributed
client-server architecture needs socket as the
means for interconnecting many client
processes to some specific server process in
order to provide corresponding users with the
same information service virtually
simultaneously. However, based on the
current status of 4.3BSD UNIX and our
experimental experiences on Sun workstation
SparcStation SS 10, the total socket number
available for the server process is 256 and the
number of child processes generated by one

1994 NCTA TECHNICAL PAPERS - 149

parent process through fork mechanism is
small too [9] [11].

In this paper, many study efforts and
experimental experiences on the topic
mentioned above have been made for shaping
the proposed generalized framework. It is our
conclusion that the multi-client multi-children­
server single-parent-server architecture
communicating with multiple pipes and
sockets is the generalized framework for
CATV transmission on future BISDN.

Parent server opens P pipes, generates
P children in order to let every child own a
private pipe. The value P is decided by
MAXFORK defined in the following program.
Then, it reads K -byte data from the file,
sequentially sends them to its children with
pipes. After the K-byte data have been send to
all destinations, parent reads next K-byte data.
The read-write procedure will repeated until
parent reads the end of the file.

I*

Every child opens S sockets, binds
every socket to a unique port number. So,
there is a port number range for every child,
and the intersection of these ranges is null set.
Then child enters a loop. Child receives data
from its pipe, stores them in its buffer, and
waits for a short time which is decided by
timeout (a static t imeva 1 structure
variable) to see if there are new client
connections reaching. If there are indeed,
child performs a c c e p t () function to
establish connection with the client(s). Then,
child sends the data in buffer to all connected
clients with sockets. The loop procedure will
not end until child can not read any data at all
from its pipe.

The server, including parent part and
child part, can be developed as the following
program.

* Example of max client connection number testing

*I
#include "inet.h"

#define MAXFORK

#define MAXSD
#define BEGINPORT 10000

char *pname;

int line[MAXLINE];

main(argc, argv)

int argc;
char *argv[];

3

3

int

int

int

char

FILE

char

fd_set

static

struct

childpid, pipefd[MAXFORK] [2], i, n, f;

int

sockfd[MAXFORK] [MAXSD], acptflag[MAXFORK] [MAXSD], newsockfd, clilen, maxfdpl;

maxsd = MAXSD, readynum, cc;

buffer[MAXFORK] [MAXLINE];

*fp;
bufferpnt[MAXLINE];

writeto[MAXFORK], ready;

struct timeval timeout;

sockaddr_in peer;

peerlen = sizeof(peer);
struct sockaddr_in serv_addr, cli_addr;

1994 NCTA TECHNICAL PAPERS -- 150

pname = argv[O];

timeout.tv_sec = 0;

timeout.tv_usec = 5;

for(i=O; i<MAXFORK; i++) {
if(pipe(pipefd[i]) <0)

err_sys("can't creat pipe%d (No.%d)", i, pipefd[i]);

for(f=O; f<MAXFORK; f++) {

if ((childpid =fork()) < 0)

err_sys ("can't fork ") ;

if (childpid == 0) {I* child *I

for(i=O; i<MAXFORK; i++)
close(pipefd[i] [1]);
if(i!=f) close(pipefd[i] [0]);

printf("child(%d): pipe%d (No.%d) is ready for

reading\n", f, f, pipefd[f] [0]);

FD_ZERO(&writeto[f]);

for(i=O; i<MAXSD; i++)

I* set the accept flags of the sockets off *I
acptflag[f] [i] = 0;

I*
* Open a TCP socket (an Internet stream

* socket).

*I

if ((sockfd[f] [i] = socket(AF_INET, SOCK_STREAM,
IPPROTO_TCP)) < 0)

err_dump("socket() error! Max socket

No. = %d" , i) ;

I* Bind our local address so that the client can

* send to us.

*I

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = htonl (INADDR_ANY);

I* INADDR_ANY _long)OxOOOOOOOO *I
serv_addr.sin_port

= htons(f*MAXSD +i +BEGINPORT);

1994 NCTATECHNICAL PAPERS -- 151

if (bind(sockfd[f] [i], (struct sockaddr *}
&serv_addr, sizeof(serv_addr)) < 0)

err_dump ("child (%d) : bind () socket%d
(No.%d) error!", f, i, sockfd[f][i]);

listen(sockfd[f] [i], 5);
fprintf(stdout,"child(%d): socket%d (No.%d)

(port %d) is listening !\n",f, i,
sockfd[f] [i], (f*MAXSD +i +BEGINPORT));

maxfdpl = sockfd[f] [maxsd-1] + 1;
printf ("child (%d) : maxfdpl %d \n", f, maxfdpl) ;

clilen = sizeof(cli_addr);

while (1)

for(i=O; i<MAXSD; i++)
FD_SET(sockfd[f] [i], &writeto[f]);

readynum = select(maxfdpl, &writeto[f],
(fd_set *) 0, (fd_set *) 0, &timeout) ;

if (readynum < 0)
err_sys ("srever: select () error") ;

if((n =readn(pipefd[f] [O],buffer[f],
MAXLINE))<=O) (

printf("child(%d): closes pipe%d
(No.%d)\n", f, f, pipefd[f] [0]);

close(pipefd[f] [0]);
for(i=O; i<MAXSD; i++)

close(sockfd[f] [i]);
exit (0);

printf("child(%d) :\n", f);
if(writen(1, buffer[f], n)<O)

err_sys ("child error: ,ldriten error on
screen \n") ;

for(i=O; i<MAXSD; i++) (

1994 NCTA TECHNICAL PAPERS

if (acptflag[f] [i])
if(writen(sockfd[f] [i],

buffer[f], n)<O)

-- 152

err_sys ("child (%d) :
writen error on socket"

' f);

if ((FD_ISSET(sockfd[f] [i],
&writeto[f]))&&(!acptflag[f] [i]))

printf("child(%d): port %d is
selected ! \n", f, (f *MAXSD +i
+BEGINPORT)) ;

if ((sockfd [f) [i]
accept(sockfd[f] [i],
(struct sockaddr *) &cli_addr,
&clilen)) <0)

err_sys ("child (%d) :
accept() error", f);

else

acptflag[f] [i] = 1;

if (getpeername(sockfd[f] [i],
(struct sockaddr_in *)&peer,
&peerlen) < 0)

err_sys ("child (%d) :
getpeername() error", f);

fprintf(stderr,"child(%d):
select from %s\n", f,
inet_ntoa(peer.sin_addr));

if(writen(sockfd[f] [i],
buffer[f] ,n)<O)

err_sys("child(%d): writen error
on socket", f);

} /* end while: read from pipe, write to sockets loop*/

} /* end child */

} /* end fork */

for(i=O; i<MAXFORK; i++)
close(pipefd[i] [OJ);

I* parent */

if((fp = fopen("data", "r")) NULL) {

1994 NCTA TECHNICAL PAPERS -- 153

printf("error: fopen()
exit(O);

\n");

else printf("parent: open file ok, transmitting data \n");

do {

if(fgets(bufferpnt, MAXLINE, fp) ==NULL) {
for(i=O; i<MAXFORK; i++) close(pipefd[i] [1]);
fclose(fp);
printf("parent: close descriptors ... \n");
exit (0);

n = strlen(bufferpnt);

for(i=O; i<MAXFORK; i++)
if(writen(pipefd[i] (1], bufferpnt, n)<O)

err_sys("parent: writen() error on pipe%d
(No.%d)\n", i, pipefd[i][1]);

sleep(l);

while (feof (fp) ! = EOF);

Client acquires a port number from
command line, and binds its socket to that port
in order to connect to server. It receives data

I*
* Example of client using TCP protocol.

*I
#include "inet.h"
#define BUFLEN 1024

main(argc, argv)
int
char

int
char

argc;
*argv[];

sockfd, port, n;
buffer[BUFLEN];

struct sockaddr_in serv_addr;

I* name argv[O]; *I

from the socket and shows them on screen.
The following program performs it.

if (argc < 2) {
printf("Usage: c ###
exit();

, ###indicates the port nurnber\n");

1994 NCTA TECHNICAL PAPERS -- 154

argv++; argc--;
port= atoi(&argv[O] [0]);

I*
* Fill in the structure "serv_addr" with the address of the

* server
* that we want to connect with.

*I
bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(SERV_HOST_ADDR);

serv_addr.sin_port = htons(port);

I*
* Open a TCP socket (an stream socket).

*I
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

err_sys("client: can't open stream socket.");
else printf("client: socket() ok \n");

I*
* Connect to the server.
*I

if (connect(sockfd, (struct sockaddr *) &serv_addr,
sizeof(serv_addr)) < 0)

err_sys("client: can't connect to server");
else printf("client: connect() ok, socket is connected \n");

str_read(sockfd);

close (sockfd) ;
exit (0);

The question is that: what is the
maximum number of the clients that can be
served by this server? It is dominated by the
following two variables:

P: the maximum number of child
server processes generated by the
parent server process on the same
machine.

S: the maximum number of socket
descriptors that a process can
open.

So, it is important to know the values of these
two variables because the available client
connection number is dependent on them.

FUTURE WORK

Our first-cut results on this generalized
framework for distributed client-server
architecture on packet-oriented networks are
very impressive, which might be beneficial to
all CATV industry and multimedia
applications by sharing the same public
BISDN. Many important issues need to be
studied. The comparison between high-speed
protocol XTP and TCP/IP is needed for
CATV -based information services. Further
research efforts and experimental trials on this
generalized framework are needed and have
been planned in order to improve its
functionality and performance.

1994 NCTA TECHNICAL PAPERS -155

ACKNOWLEDGEMENT

I would like to thank Mr. Tsin-Hai
Chang, one of my best students, for his
contributions to the implementations of
software programs in this paper.

REFERENCES

[1] Kuo, G. S., "New Systems Concepts on
HDTV System," in the 1991 NAB
HDTV World Conference Proceedings,
in Las Vegas, Nevada, on Apr. 15-18,
1991.

[2] Kuo, G. S., "Systems Architecture of
Information Management System for
Future HDTV System," in the 1992
NAB HDTV World Conference
Proceedings, in Las Vegas, Nevada, on
Apr. 13-16, 1992.

[3] Kuo, G. S., "Some Control Issues for
Future HDTV System," in the
Conference Proceedings on High
Definition Video, International
Symposium on Fiber Optic Networks
and Video Communications, in Berlin,
FR Germany, on Apr. 5-9, 1993.

[4] Kuo, G. S., "A New Framework for
Customer Control of Future Personal
Communications Networks," in the Fifth
International Conference on Wireless

1994 NCTA TECHNICAL PAPERS --156

Communications, in Calgary, Alberta,
Canada, on Jul. 12-14, 1993.

[5] Stevens, W. R., UNIX Network
Programming, Prentice-Hall, Englewood
Cliffs, N.J., 1990.

[6] Sun Microsystems, Network
Programming Guide, Revision A, Mar.
27, 1990.

[7] Ogle, D. M., Tracey, K. M., Floyd, R. A.,
and Bollella, G., "Dynamically Selecting
Protocols for Socket Applications,"
IEEE Network, pp. 48-57, May 1993.

[8] Aoyama, T., Tokizawa, 1., and Sato, K.,
"ATM VP-Based Broadband Networks
for Multimedia Services," IEEE
Commun. Mag., pp. 30-39, Apr. 1993.

[9] Kuo, G. S., "A Generalized Framework for
HDTV Transmission on Future BISDN,"
in the Proceedings of International
Workshop on HDTV '93, in Ottawa,
Canada, on Oct. 26-28, 1993.

[10] Dukes, S. D., "Next Generation Cable
Network Architecture," in the
Proceedings of Technical Papers from
the 42nd Annual NCTA Covention and
Exposition, in San Francisco, California,
on June 6 -9, 1993.

[11] Kuo, G. S. and T. H. Chang, "A
Generalized Framework for HDTV­
Based Multimedia Transmission on
Future BISDN -(11)," in the Proceedings
of NAB '94 MultiMedia World
Conference, in Las Vegas, Nevada, on
Mar. 20-24, 1994.

