
FLEXIBLE DATA STRUCTURES AND INTERFACE RITUALS FOR RAPID 
DEVELOPMENT OF OSD APPLICATIONS 

Caitlin Bestler, Manager Control Systems Design 
Zenith Cable Products, Division of Zenith Electronics Corporation. 

Abstract 

On Screen Display (OSD) used in CATV 
subscriber set-top decoders can be used for 
many different interactive viewer information 
services such as Schedule Guides and Sports 
Scores. Allowing for the required flexibility 
and fUnctionality of Interactive Information 
Services, an OSD decoder system must use 
flexible redejinab/e data structures and 
inteifacing rituals. This mandates 
downloadable behavior and data , not just 
downloadable screen images. 

. Decades of Information Systems (IS) 
software development on mainframe and 
personal computers have shown that mere 
reprogramability is not enough. IS applications 
must evolve almost constantly. Staying 
responsive to user needs while avoiding 
development bottlenecks requires that IS 
systems be built from standard parts 
customized by parameterization and/or non
procedural specifications rather than custom 
hand-crafted code. Examples would include 
Relational Databases and Application 
Generators. 

These IS productivity techniques can be 
applied directly in headend computers, and 
scaled to fit within the OSD decoder. Zenith's 
HT-2000 decoder system applies both 
techniques to rapidly develop and then deploy 
Interactive OSD Information applications. 

SUPPORTING OSD INTERACTIVE 
INFORMATION APPLICATIONS 

A typical first exposure to On Screen 
Display capability is a VCR. Cryptic flashing 
lights on a control panel are replaced by cryptic 
text instructions displayed on the screen. 

1993 NCTA TECHNICAL PAPERS -- 223 

To be fair, the text messages aren't all that 
cryptic. They are just unfamiliar, and expert 
consumers had already learned how to do 
everything with the control panel. 

For non-expert users, the VCR's features 
are more accessible. There just aren't any new 
features. Existing features just had a new, more 
"user friendly", front end. 

While an OSD set-top decoder can 
certainly be made more user friendly, the real 
potential is in entirely new features such as 
Schedule Guides. These new Interactive 
Information Services can be standalone, or 
integrated with video programming. 

An interactive OSD information 
application allows the viewer to obtain specific 
information when they want it. Selection and 
timing is under viewer control. The requested 
data is presented on screen, possibly on top of 
specific video programming. 

When designing Zenith's HT -2000 decoder 
and its headend computer, the OSD 
Information Gateway, several requirements 
were identified. Each is discussed in one of the 
following sections: The Need For Flexibility. 
Downloaded Data. not Images. and Integrated 
Control 

These points led to the conclusion that a 
downloadable decoder was needed to allow 
easy development and evolution of new 
applications. It was also important to allow for 
easy deployment of new applications. 

THE NEED FOR FLEXIBILITY 

Correctly predicting exactly what 
information is required for Interactive 
Information services is next to impossible. 



For example, a Schedule Guide application 
has far more open questions than you might 
expect: 

• Will viewers want to find movies by theme 
and/or actor? Will the data be available? 

• Should the schedule be presented in a two
dimensional grid, or a tabular listing? 

• Will viewers want information on all 
channels, or only the movie channels, or 
only the PPV offerings? 

• How much information do viewers want 
for each movie? The title, two lines, four 
pages, the actors, the director? Do they 
want to search by date, rating, price range, 
director, theme and/or copyright date? 

• Would people prefer a long schedule with 
minimal detail, or a shorter one with more 
information? Which is worth more to 
them? 

• Should PPV offerings be listed with Pay 
TV movies or separately? What about 
movies on non-pay channels? 

• How would a staggered start Video on 
Demand channel be shown in the Schedule 
Guide? What about a pure Video on 
Demand service? 

• Is the Schedule Guide a premium service, 
or a method of promoting PPV? 

Moving past the schedule guide, what other 
services will be required: stock quotes, 
horoscopes, sport scores? Will Baseball fans 
want just the final score, or a complete box 
score? 

Even more complex than identifying the 
information to be presented is deciding exactly 
how it will be presented and which keystrokes 
the viewers will use to access it. 

A well defined user interface combines 
User Rituals with User Myths. The user rituals 
are patterns of input required to do certain 
things. Pressing backspace to erase the 
previously typed character IS a common 
computer user ritual. 

A user myth is an explanation, in user 
terms, of what each input key or sequence 
does. Clicking the left mouse button in a 
certain screen region is "pushing a toggle 
button". 

Consistent user rituals and myths make an 
interface easy to work with and understand. An 
interface that requires raw memorization of 
arbitrary input and output sequences is very 
difficult to learn and user unfriendly. 

Predicting in advance what rituals viewers 
will find difficult, and which they will find 
frustrating is even more difficult than knowing 
what information services they want. 

It would be impossible to correctly define 
all of the information and interface rituals 
required for these various services. Even with 
something as 'obvious' as the schedule guide, 
the answers are just not reliably available. 

You don't know. I don't know. That 
marketing consultant who wants to sell you the 
answers doesn't know either. None of us can 
know for the simple reason that the viewers 
themselves don't know. 

Conducting a survey won't do any good, no 
matter how large your sample is. The viewers 
can only give you their guesses. The viewers 
themselves won't know until after they have 
started using these services. 

A survey conducted before the introduction 
of the remote control might have projected 
little interest in remote controls, since people 
only change channels a few times an hour. 
"Zappers" did not exist. 

We are attempting to provide tools for 
viewers. As with those who designed 
automotive or computer input devices, we can 
only propose options. We must wait to find out 
which options consumers will find useful 
and/or become accustomed to, and which they 
will find annoying. 

1993 NCTA TECHNICAL PAPERS -- 224 



Accommodating consumer interests 
requires flexibility, and constant adaptability. 
Would a supermarket manager buy a check-out 
system that dictated how merchandise be 
shelved for the next ten years? Why should a 
Cable Operator accept an OSD decoder that 
locks in the format of the Schedule Guide and 
other OSD services? 

The nature of the information displayed, 
the format it is displayed in, and the 
interactions the viewer goes through to access 
them will all need to change during the 
lifetime of any OSD decoder. 

To meet these needs we must be able to 
actually redefine the behavior of the decoder 
from the headend without modifying the 
decoder. 

DOWNLOADED DATA. NOT IMAGES 

How the OSD decoder receives and uses its 
information is critical to allowing flexible 
creation, and evolution, of these and other 
user-friendly features. 

A Schedule Guide, for example, could be 
viewed as nothing more than many pages of 
schedule information. Rather than waiting for 
the information to scroll by, the viewer can 
now Page Up and Page Down on their own. 

Doing so would sell the potential of an 
OSD decoder short. Separating data reception 
and storage from display allows flexible 
efficient implementation of many desirable 
features. Examples are given in the following 
sub-sections. 

Tierina= 

Services such as Sports are likely to be 
tiered. Only subscribers to these services would 
be able to display this data. 

Even within a given application, there 
could be levels of service offered by tiering. A 
"basic" Schedule Guide might only provide 
detailed movie descriptions for tonight's PPV 
offerings. A "premium" Schedule Guide tier 
would provide complete descriptions of all 
movtes. 

1993 NCTA TECHNICAL PAPERS -- 225 

Since decoder RAM space will always be 
limited, it would be desirable to have the 
decoder only store data for which it was 
authorized. For a given RAM capacity the 
decoder would be limited in what tiers it could 
be authorized for, not in what tiers were 
available to it. 

Conditional Display of Data I User Filterina= 

Unwanted information is clutter. It gets in 
the way of valuable information. The 
information displayed should adapt to 
individual viewer preferences. Insisting that 
every household receive detailed movie 
descriptions for an Adults Only service would 
probably not be desirable. 

You may view a Schedule Guide as a value 
added service or as a promotional device. In 
either case information about channels a 
viewer will never want to watch is undesirable. 

If the Schedule Guide is viewed as a 
premium service, an annoying one will not be 
worth as much. If the Schedule Guide is a 
promotional feature, you want the viewer to 
concentrate on promotions for things they are 
likely to buy. 

Multiple Indexina= of the Same Data 

In many applications the same data could 
be found in different indexing orders or via 
alternate User Rituals. 

The same movie may be found in a PPV 
index, in a Schedule Grid, a time-oriented 
listing, a channel-oriented listing, a theme 
index, an actor index, or even a Director index. 

The box score for the Chicago White Sox 
vs. California Angels game could be reached 
via either "Chicago White Sox" or "California 
Angels". 

Redundant Display for Convenience 

Sometimes an application displays 
information it normally edits on another screen 
for the viewer's reference. 



The fact that a channel is locked out via 
Parental Control should be displayed not only 
on the Parental Control screens, but on the 
Schedule Guide display as well. 

Programs scheduled for automatic taping 
might be flagged in Schedule Guide grids and 
listings. 

UOEGRATEDCONIROL 

Schedule Guide data should interact, not 
just be a passive display. The viewer should be 
able to do things with it. While browsing 
through a Schedule Guide the viewer should be 
able to select a given program and then do any 
of the following: 

• Request a more detailed description. 

• Tune to that channel immediately. 

• Request an IPPV purchase of that program. 

• Schedule an automatic taping of that 
program. 

When tuning to a new channel, the decoder 
could display the channel number, name, and 
information about the current program. 

Parental Control and Favorite Channel 
maps could reference channels by name. 
Parental Control could be extended to lock-out 
or exempt specific programs, rather than 
whole channels. 

Opinion surveys and/or home shopping 
applications could use the two-way 
transmission capability to interact with the 
headend. 

Application Co-existence 

While working on each separate OSD 
Information Application it would be easy to 
forget that the Viewer is likely to view their 
set-top Decoder and television as one unit. And 
the primary purpose of that unit is to watch 
television, not check stock quotes. 

One aspect of "integrated control" is the 
ability to toggle between the OSD Information 
Application and watching the viewer's 
program. 

Remote control layout and software 
conventions should make it easy for the user to 
flip in and out without having to start over 
from scratch every time they re-enter an 
application. 

Conditional Access 

Any Schedule Guide application should be 
integrated with the decoder's Conditional 
Access system. It should be able to display 
IPPV ordering instructions, transmit two-way 
IPPV orders, and give viewer feedback on 
confirmed IPPV authorizations and authorized 
subscription channels. 

Virtual Channels and Interactive Television 

Many applications require "virtual 
channels". In these applications the decoder is 
tuned to an alternate channel without bothering 
the viewer with the details or changing the 
displayed channel number. 

Examples would include Barkering, 
staggered start PPV Video "On Demand", 
interactive television, video back-drops for 
messaging systems, and targeted advertising. 
The ability to tune the decoder becomes just 
one part of the OSD applications "message". 

DON'T RE-INVENT THE WHEEL 

While the information, and viewer rituals 
for accessing it, are unstable, the possible 
sources of this information are even more 
varied and subject to change. A flexible OSD 
Decoder Information Service must display 
unknown data in unknown formats that is 
originally captured by Headend equipment 
from unknown sources. 

Responding to rapidly changing highly 
flexible requirements is not an easy process. 
Making the OSD decoder downloadable allows 
new services to be developed after the decoder 
is already in the field. It does not make 
developing those services any easier. 

1993 NCTA TECHNICAL PAPERS -- 226 



We need a way of developing and evolving 
new decoder features. We have to be able to 
integrate the new features with existing 
features. Lastly, we have to be able to test and 
deploy the new features without constantly 
disrupting customer's use of the decoders and 
the features they already enjoy. 

These are not new problems. They have 
plagued software development for several 
decades now. Methods of coping evolved to 
deal with these probiems include Prototyping, 
Relational Database Management System 
(RDBMS), Report Generators GUI Screen 
Painters, and Revision Control. 

Rather than re-invent the wheel, we should 
examine these solutions to see what lessons can 
be applied to the developing Interactive OSD 
Information Services. 

Prototyping vs. Specification 

As a rule, Software developers are much 
better at correctly implementing something 
than we are at knowing what it is we should be 
implementing. 

The most serious "bugs" are not incorrect 
algorithms. They are incorrect features. The 
software functions "perfectly." It just doesn't 
do anything that is of any particular use to 
anyone. 

The first attempt at solving this problem 
was The Specification. The Specification has 
taken many forms: long narrative descriptions 
("Victorian Novels"), contract-like "rules," 
flowcharts, data-flow diagrams, structure 
charts, data structure diagrams, state transition 
diagrams and the latest fad: object oriented 
diagrams. 

Software Developers can spend a great deal 
of time debating the relative merits of 
Methodologies. A Methodology specifies how 
The Specification is developed, what must be 
in it, and how it is translated into a working 
system. 

1993 NCTA TECHNICAL PAPERS -- 227 

Methodologies are most often compared 
and contrasted with a near religious fervor. 
However, they almost all make one critical 
assumption- the "User" already knows what is 
required. 

Evaluating interfaces described on pieces 
of paper is a very difficult task. The format of 
the Specification, let alone which icons are 
used in what Diagramming conventions hardly 
matters if the user is only reporting their 
hunches. 

When a user has never used a system 
exactly like this, there is really no alternative 
but to let the user actually test a prototype of 
the system. Nothing can match a 'hands-on' test 
drive of the actual interface for identifying 
problems with it. 

Most interactive user interfaces are now 
prototyped and/or developed with tools that 
allow the displays and input rituals to be 
rapidly updated. 

Prototyping and/or rapid deployment of 
modified interfaces is extremely vital to the 
development of Interactive OSD Information 
Services for several reasons: 

• A screen that looks fine when sketched on 
a paper memo, or even drawn on a PC 
graphics program, may look terrible when 
shown a real television set. 

• Viewers interact using a Remote Control 
and/or set-top keypad. These are very 
different from a PC keyboard. 

Relational Database Management Systems 

Relational Database Management Systems 
(RDBMS) manage data for IS applications. 
Professors build entire careers out of debating 
the fine points of Relational Database theory 
with each other, so I'm not certain how much 
can be explained in a page or so. 

A RDBMS organizes data into Tables. 
Tables are said to have Rows and Columns. 

Each Row is a record, or one instance of 
data. A "Programs" table would have one row 
for "The Empire Strikes Back". 



Each Column represents one thing that is 
known about each instance. It is an attribute of 
each record. Columns for the "Programs" table 
could include "Title" or "MP AA Rating". 

Tables do not include any "repeating" data. 
You cannot have a "Stars" column that lists up 
to six different stars. Instead a separate table 
lists each star for each movie. 

Tables reference each other only by value. 
Some of the Columns in Table X can be used 
to search Table Y. Table X does not have 
anything like a pointer or Record Number for 
Table Y. 

These conventions avoid data that is 
massively entangled both with code and itself. 
The dependencies have been limited and 
cataloged. This separation allows migration to 
new definitions of the systems data without 
having to rewrite every piece of code that uses 
that data. 

An OSD decoder can benefit greatly from 
similarly standardized data structures. Headend 
computers supplying data to the OSD decoder, 
such as the HT -2000 system's OSD 
Information Gateway, can use an RDBMS to 
store the original data and to map its translation 
into the downloaded data. 

Report Generators 

Report Generators use RDBMS 
standardization to allow reports to be specified 
in a non-procedural fashion. 

A Non-procedural report specification 
states what information should be in the report, 
and how it should be formatted. It does not 
specify how the data should be retrieved, 
sorted and formatted. 

When applicable, specifying something in 
non-procedural format has proven to be far 
faster and reliable than writing procedural 
specifications. 

Non-procedural specifications also allow 
hardware upgrades. The same results can be 
achieved under new hardware. The same 
procedures may not translate as easily. Later 
OSD decoders are likely to have more RAM 
and higher resolution display devices. These 
decoders would co-exist with older models. 
Non-procedural specifications will be shared. 

GUI Application Generators 

GUI (Graphical User Interface) 
applications that run under such platforms as 
Windows and Presentation Manager can be 
very difficult to code. GUI Application 
Generators slash development time by allowing 
non-procedural specifications to combine 
standardized components for a new interface. 

Use of common building blocks is not just 
a convenience. It is desired for its own sake. 
Conventions such as list boxes, drop-down 
combo boxes, checklists, pull-down menus and 
radio buttons are valuable not only because 
they reduce coding time but because they make 
it easier for the computer user to learn how to 
use the application. 

Maintaining a common "Look and Feel" 
for OSD Information applications is even more 
important than for PC applications. Viewers 
have less motivation to work their way through 
a strange input ritual. While being flexible, the 
development system for OSD Information 
applications should encourage use of standard 
input and display mechanisms. 

Revision Control 

Even before software developers identified 
the need to prototype systems, they knew that 
systems already in use had to modified. 

Developing systems is hard enough. 
Modifying systems that are already in use is 
considerably harder. Many of these problems 
are still relevant to OSD information 
applications: 

• Interfaces must evolve. Even new features 
should feel familiar to old users. 

• User edited data should be maintained. 

1993 NCTA TECHNICAL PAPERS -- 228 



• For many systems operations must continue 
even while the system is upgraded. 

• Many items may change for a new feature: 
the data sources, how data is stored, and the 
code to use the data. Changing all of them 
at the same instant is unrealistic. 

• New code sometimes blows up, requiring 
an immediate rollback. 

SCALING THE WHEEL TO FIT 

RDBMSs and the other techniques 
described are all very powerful tools. Re
inventing the wheel is always a waste. But a 
set-top decoder with an 80386 is overkill, 
expensive overkill. 

As currently defined and implemented, 
these tools would not fit in a set-top decoder. 
The wheel already exists, but it doesn't fit. 
However the approach does not have to be 
abandoned, just scaled to fit. 

The HT -2000 decoder would need a 
processor capable of accessing considerably 
more than 64KB of RAM. No matter how you 
compress it, you can't fit much of a Schedule 
Guide in 64KB, let alone any other features. 

Additionally this processor would have 
many other responsibilities: 

• Accept input from keyboard. 

• Accept input from IR remote. 

• Control the OSD chip. 

• Tune the decoder. 

• Control other outputs: IR out, LEDs, 
Volume, video blanking, audio mute, any 
two-way transmitter and any expansion 
port. 

• Manage a small amount of self-edited data. 
This data would include favorite channels 
and a user PIN for IPPV purchases and 
Parental Control. 

• Interface with the Conditional Access 
system. To enhance security this was kept a 
separate module in the HT-2000 decoder. 

1993 NCTA TECHNICAL PAPERS -- 229 

The processor would not have to do 
anything that complex with the data. There are 
no square roots, or regression analysis to be 
performed. Vast processing speeds are not 
needed, just the ability to do simple things with 
vast amounts of data. 

The most powerful affordable candidates 
were derivatives of 8-bit processors that could 
look at anywhere from 512KB to a few 
Megabytes. However it is typically only visible 
in 64KB chunks. This increases memory 
management complexity. Many had built-in 
help for IO interfacing, such as UARTs. 

Downloadina: Safely 

A downloadable OSD decoder's behavior is 
controlled by the data packets sent to it from 
the headend. The "code" it is executing is 
updated over the cable downstream, rather than 
by distributing new ROMs. 

On the HT -2000 project the downloaded 
behavior is called the "Dialog". Once a Dialog 
has been written it would remain in use 
indefinitely. This might be a few days, a few 
weeks, or a few years. 

The other data downloaded is the Dynamic 
Data. This data changes on a daily basis, or 
possibly more frequently. Schedule Guides, 
actual weather information and sports scores 
are all Dynamic Data. 

By contrast, the Dialog is what knows how 
to use the Dynamic Data. 

Downloading dynamic data is relatively 
simple and risk free. The worst that can happen 
is that the information is wrong. The 
information has a limited lifespan. It will be 
updated and/or deleted soon. 

Errors are also relatively innocent. If a 
movie title is "Star Warx" a few viewers will 
notice and get a minor chuckle. 

Downloading dialogs is considerably 
riskier. An undetected error might cause the 
decoder to do something various obnoxious 
such as jamming the volume to full or refusing 
to tune where the viewer want to tune. 



It is imperative that Dialog downloads be 
as reliable and resilient as possible. 

Downloading dialogs over a cable plant to 
thousands, or even hundreds of thousands, of 
decoders presents several problems. 

In a one-way plant there is no way to 
acknowledge a successful download, or request 
a new download. Even in a two-way plant the 
upstream capacity might not allow each 
decoder to individually acknowledge the 
download. 

Bad downloads are unavoidable. Whatever 
is downloaded can and eventually will be 
garbled at one or more points in the 
distribution chain: 

• Error detection codes are very powerful, 
but only a partial solution. Fewer than 1 
undetected error in 10,000,000 sounds very 
secure. But if you have 200,000 decoders 
talked to I 000 times a day it means 20 irate 
customer calls each and every day. 

• Operational errors can occur. The dialog 
may have been restored onto the headend 
computer from a faulty tape or floppy disk. 

• Software errors are inevitable. 
If bad downloads are unavoidable the 

question becomes, can you fix it? The only 
way to guarantee that is to ensure that 
nothing you can download could prevent the 
decoder from accepting another download. 

This requires that the OSD decoder 
essentially have "two minds". One accepts 
downloads. The other is downloaded. Nothing 
the second mind does can interfere with the 
first mind's ability to accept further downloads. 

There are four valid approaches to this: 
• Some processors allow two virtual 

programs in the same processors. Usually 
dubbed Supervisory and User mode, these 
processors ensure that User mode code 
cannot interfere with Supervisory code. 
This would be a perfect solution, except 
that this feature is generally not available in 
the processors affordable enough to place 
inside a set-top decoder. 

• Two processors. This is essentially a 
hardware simulation of the above. It takes 
more power and is nearly as expensive. 

• An External watchdog timer could force 
termination of RAM stored code and return 
to ROM based code. This is more feasible, 
but still costs money and takes up board 
space. 

• Interpretive code. The downloaded 
behavior does not truly gain control of the 
processor. The ROM based code simulates 
a processor that executes the downloaded 
code. 

Interpretive code was chosen for the 
HT -2000 decoder. In addition to its safety 
features, interpretive code offers other 
advantages: 

• Processor independence. Later versions of 
the decoder can be implemented on a more 
powerful processor, possibly with extended 
instructions while maintaining full 
backwards compatibility at the binary level. 

• More compact downloads. Because the 
"machine code" is designed for OSD 
applications it can be more compact than 
native machine code would have been. 

• Interpretive code can be restricted from 
updating data under control of the headend 
computer. This would be more difficult 
under the other solutions. 

• Interpretive code can have other 
safeguards, such as ensuring that it will 
listen for fresh user input regularly, in 
addition to being re-downloadable. 

• Hardware dependent code, such as device 
drivers for handling input and output, can 
be placed in the interpreter. Essentially, the 
interpreter becomes the equivalent of a PC 
BIOS. Later revisions of the hardware can 
handle hardware interfacing differently 
without having to recode the downloaded 
applications. 

1993 NCTA TECHNICAL PAPERS -- 230 



State Driven Display Paintinr: 

The decoder's display painting primitives 
should support non-procedural generation of 
displays. 

It should be optimized to allow static 
receptive elements to be specified easily and 
efficiently, while still allowing complex data 
dependent displays. 

The HT-2000 decoder decides what to 
display by a current Dialog State. In a given 
state the decoder will have a recognizable 
display and respond to inputs in a specific way. 

Making display logic state based helps 
reinforce an important principal of graphical 
user interfaces: if the program/system now acts 
differently it should look different. 

Basically a state is what the viewer would 
think of as a given display. The data displayed 
there might change, but it is recognizable. One 
state can be "typical schedule guide page". All 
pages of the schedule guide act the same way, 
and display the same type of data in the same 
format. Only the specific data is different. 

The viewer will recognize a Schedule Grid 
as a given display no matter which page they 
are on, or what day they tune to the Schedule 
Grid. It has a certain "look", and the viewers 
will know what they can do when the screen 
has this "look". 

DATA~AGEMffiNTP~S 

A full RDBMS is clearly beyond the 
horsepower of any 8-bit processor. A more 
realistic set of standard data management 
capabilities would have to be selected. 

Many factors had to be considered: 

• ROM space was even more tightly 
constrained. Device interfacing, such as IR 
input handling, would have first claim on 
ROM space. Standardized data primitives 
would have to be implemented in very 
compact simple code. 

• There will always be more uses for RAM. 
Feature tiering will require different 
decoders to hold different data. 

1993 NCTA TECHNICAL PAPERS -- 231 

• The decoders were in a heavily distributed 
environment. Most customers would be 
running one-way Cable plants. This meant 
that updates would not be acknowledged. 

Certain RDBMS features were too 
expensive to implement in the decoder. We 
found ways to do without those features, or to 
provide the same service in the OSD 
Information Gateway rather than the decoder 
itself. 

An RDBMS allows the same data to be 
fetched in many different formats. While this 
allows portions of the application to view the 
data as appropriate to its needs and how the 
data was defined when it was coded it does 
carry a heavy run-time penalty. 

This penalty is high enough that most 
RDBMSs allow the source code to be compiled 
to match the actual data format, rather than 
binding at run-time. There would certainly be 
no need for run-time binding within the OSD 
decoder. 

RDBMSs also allow the data format to be 
redefined without losing existing data. You can 
add new columns to a table, or re-arrange 
existing columns, without losing any current 
data. 

The code to support this in the decoder 
would simply be too complex. Instead we 
decided that the original data would always be 
stored in a RDBMS on the OSD Information 
Gateway. The new data would simply be re
downloaded in the new format. 

Many applications have data that expires at 
a specified time. Schedule Guides are just the 
most obvious example. 

When all the decoders are deleting the 
same records it actually makes more sense for 
the headend to tell them to delete those 
records. 

In this way "garbage collection" code can 
execute in a more powerful headend computer, 
rather than in each and every separate 
processor. 



Record Sets 

An RDBMS minimizes inter-dependence of 
records by using "content" addressing. An 
employee record does not have a pointer to the 
physical location of their Department. Instead 
it has a key value that can be used to search for 
and find the Department record. 

This sort of capability is crucial to a 
distributed database system. It was scaled 
down for the HT -2000 decoder by turning 
RDBMS tables into Record Sets. 

Each Record Set contains many fixed 
length records. Each record is much like a 
record, or row, from a RDBMS table. 

Each record would also contain many 
fields. These are essentially the same thing as a 
RDBMS column or attribute. 

The downloaded dialog simply asks for a 
specific record from a specific record set. That 
record may be in different locations for 
different decoders. Indeed if memory 
capacities have been varied based on individual 
option tiering, they will be. The application 
code does not need to understand this. 

The size of each record, and the number of 
records allowed is defined for each Record Set. 
Additionally the record set may have an 
optional key field used to sort all of its records 
with. 

Sorted Record Sets are kept in sorted order. 
Updates are merged into the Record Set based 
on the key value at the beginning of the record. 
Old records, such as yesterday's schedule, are 
deleted by key range. 

Sorted records sets are used to index with 
user meaningful data. Schedule records sorted 
by date, time and channel would be a prime 
example. The downloaded dialog looks for the 
Schedule Record for a specific channel and 
time, not a specific memory location. 

Unsorted record sets are really just 
optimized sorted Record Sets. They have a one 
or two byte 'key value' that is not physically 
stored with the record. Instead it is implied by 
which slot of the record set the record is placed 
within. 

Unsorted record sets are most useful when 
dealing with things that can be numbered in a 
tight range. Examples would include visible 
identifiers such as Channel numbers, and 
internal identifiers such as Program Numbers. 
Internal identifiers would be obtained from 
sorted Record Sets. 

Splitting the schedule information like this 
into two separate Record Sets allows the same 
Program Information to be used for a single 
movie no matter how many times it is in the 
schedule. 

Placing data in the database once, no 
matter how many places it is referenced from, 
is one of the most crucial aspects of Relational 
Database theory. It is critical to efficient data 
handling and standardized handling of 
distributed updates. 

The Record Sets of the HT -2000 decoder 
maintain this essential simplification with only 
a handful of easily implemented data 
manipulation primitives: virtual memory, 
record sorting and direct indexing. 

An Example Schedule Guide in Record Sets 

Suppose that schedule information is 
available from an outside source. The records 
each describe all of the times a particular 
channel shows a given movie. A record might 
be formatted as follows: 

• The Service Name. 
• The Movie Title. 
• A comma separated list of actors. 
• The Movie Length. 
• The dates and times it will be shown. 

This data would be normalized into OSD 
Information Gateway RDBMS tables: 

• Each Service row would specify an 
available service. 

1993 NCTA TECHNICAL PAPERS -- 232 



• Each Movie row would give information 
on one specific movie no matter how many 
times it was shown. 

• A Showing row would specify that Movie 
X was being shown by Service Y at a 
specific time. If the same movie was shown 
seventeen times there would be seventeen 
Showing rows referencing it. 

• A Starring row would specify that Actor R 
appeared in Movie X. If Movie X had five 
listed stars there would be five Starring 
rows referencing it. 

During the final translation into Record 
Sets we would attempt to further compress the 
data. Long keys values used as foreign keys 
may be replaced by short keys that index into 
an unsorted Record Set, for example. 

Referential Inte&rity 

One of the key features of a RDBMS is 
Referential Integrity. This feature ensures 
that if a Pending Order record has a 
Customer Num and a Part Num that there are 
matching Customer and Part records 
identifying who that customer is and what the 
part is. 

The OSD decoder's data primitives must 
ensure that a Schedule Record reference to a 
Program Num is not referencing a non
existent one. 

The highly distributed nature of a one-way 
Cable system presents a major challenge here. 
Unlike an RDBMS, the OSD decoder cannot 
just reject a Schedule Record that references a 
bad Program Number. 

In a one-way Cable plant the OSD decoder 
has no way to complain. Putting up an OSD 
error message to the effect of "111egal foreign 
key in update at 13:47 on 4/21" would be 
extremely user unfriendly. 

Instead, we have to ensure that the Program 
record is added before the Schedule record by 
controlling the order in which the OSD 
decoder will accept them. 

1993 NCTA TECHNICAL PAPERS -- 233 

INFORMATION DISTRIBUTION 

The OSD Decoder is just the last step in a 
complete OSD Information Service. Many 
other components are involved in a complete 
system. 

Zenith's HT -2000 system has the following 
components: 

• The OSD Information Gateway is 
responsible for downloading the OSD 
decoders. This requires it to collect all of 
the data to be downloaded from various 
sources first. 

• Various Data Providers supply data to the 
OSD Information Gateway. Many of them 
are supplying the data in a standard format, 
rather than talking specifically to the OSD 
Information Gateway. 

• A separate Conditional Access Controller 
manages Pay TV security. It is likely to 
have associated equipment such as 
Encoders and Receivers. Because HT -2000 
was built upon the existing Z-T AC system, 
the Controller had to remain separate to 
provide continued support for customers 
who had not yet fully converted to 
HT-2000 decoders. 

• The Cable Operator presumably has some 
form of Management System which is 
typically a separate computer. Typically the 
Management Computer would be 
connected to either the OSD Information 
Gateway or the Conditional Access 
Controller, but not both. Commands would 
then be routed to the correct computer. 

Data would first be captured or accepted 
from a Data Provider. Conceivably the 
Management System could also provide some 
data. 

Some configuration data, such as Channel 
line-ups would be entered directly on the OSD 
Information Gateway using GUI front ends. 

From either source the data would be 
placed into RDBMS tables. 



Reports, developed using Report 
Generators, could be run on this data. 

GUI front ends, developed using GUI 
Application Generators, allow review and 
correction of any errors in the data. While data 
would typically not be hand inspected, the 
Cable Operator should always retain the ability 
to review any information before it is sent out 
to their customers. 

The data may then have to be prepared for 
download. This process may involve some 
compression of data. For example, the same 
phrases may be found in many different movie 
descriptions. In order to preserve decoder 
RAM space the OSD Information Gateway 
will attempt to minimize the number of 
separate times it downloads the text "thrilling 
adventure" or "heartwarming romance." 

The data is then exported from the 
database. This involves final translation of the 
data into Record Sets and the required 
download packets. 

The data is received by the decoder. 

The viewer may then have the dialog 
display the desired data. 

CREATING NEW SERVICES 

Developing a new interactive application 
for an OSD Decoder would involve several 
steps. The exact ordering of these steps, and 
some of the boundaries between them could 
vary depending on the development tools and 
procedures adopted. The specific steps 
presented here are for Zenith's HT -2000 OSD 
Decoder and OSD Information Gateway. 

Definina the Editable Data 

All information downloaded is ultimately 
derived from the OSD Information Gateway's 
RDBMS tables. A new application will 
typically require the addition of new tables. 
Enhancements to existing applications may 
need no additional tables, or only additional 
columns for existing tables. 

It may be desirable to allow high volume 
data with rapid turnover to bypass the 
Relational Database. Zenith's OSD Information 
Gateway allows this option, but still pretends 
the data came from the RDBMS. 

This standardizes handling of the data, and 
allows the by-pass decision to be deferred until 
after the application has been developed and 
tested when solid performance data is 
available. 

Definina the Downloadable Data 

The data that will be available to the 
dialog must be designed. This requires 
deciding how the data will be formatted and 
sorted, and what Edited data it is derived from. 

In addition to deciding what the data will 
look like, the Application Designer must 
decide which data will be available to which 
decoders. 

In some cases the supporting data will 
already exist -it is just being indexed or 
ordered differently. In other cases new 
RDBMS tables and/or columns will have to be 
specified. 

Each Record Set can have many Record Set 
Revisions. The first version of a Record Set 
may have been missing a field, or it may have 
included a field that turned out not to be 
required. 

Both Record Set Revisions can co-exist in 
the same OSD Information Gateway. The 
"Data Design" details how each Record Set 
Revision is formed from RDBMS tables. 

Record Sets changes may be related. 
Schedule records and Program Information 
records might both be changed at the same 
time. The old versions work together just fine; 
the new versions get along even better - but 
you can't mix the two. 

The Data Design also specifies which 
Record Set Revisions can be used together. 
This specification is called a Record Set List. 

The Data Design is itself stored in RDBMS 
tables. 

1993 NCTA TECHNICAL PAPERS -- 234 



Specifyina: the Downloaded Dialog 

The Dialog Editor is a GUI Application 
Generator for HT -2000 dialogs. It allows a 
Dialog Author to develop an interactive 
application, dubbed a dialog, that works for a 
specific Record Set List. 

The Dialog Editor allows screen images, 
called "Forms", to be organized in Sections and 
populated with input and output fields. 

Each Form consists of a static screen image 
and dynamic displays associated with fields. 
Fields can display data from downloaded 
Record Sets and/or decoder variables. 

These can be combined to form complex 
expressions. A field specification might be the 
equivalent of "The name of the Program shown 
on the Channel in variable X no earlier than 
then Time in variable Y." 

The Dialog Editor also allows the Author 
to specify Transitions. Essentially each 
transition specifies what Response there is to 
each Input event when the dialog is 'focused' 
on each given input field. 

A Dialog Editor 'input focus' matches the 
Decoder's concept of 'state'. A dialog is in a 
given 'state' when a given input field has focus. 
Some 'forms' have invisible 'input fields'. For 
example, we pretend there is an input field 
when the decoder is turned off. 

Input events include IR Remote keypresses, 
keyboard input, Conditional Access status 
changes and time-outs. 

A Response may invoke a routine that is 
allowed to modify decoder variables. It can 
also specify a new state/input focus. 

The Dialog is then compiled. The compiled 
dialog can be distributed to many different 
OSD Information Gateways. 

Dialoa: Preparation and Download 

At each site the Dialog can be prepared for 
downloading. This step can allow optimization 
of downstream downloading capacity and 
decoder RAM to meet site priorities. 

1993 NCTA TECHNICAL PAPERS -- 235 

The prepared Dialog can then be 
downloaded to decoders. The new dialog 
"takes over" from the previous dialog in the 
decoder. It can then preserve as much of the 
old state as possible. 

With minor dialog changes, there may be 
no disruption at all to the viewer. Even in more 
significant code changes the new dialog will be 
able to let the viewer keep watching and/or 
taping whatever they were watching. 

A Complete Update Scenario 

Suppose a new feature has been proposed. 
In order to explain it a Dialog using no new 
dynamic data is prototyped with the Dialog 
Editor. 

This dialog could start with the current 
dialog as a base, or be nothing more than a 
stand-alone stub of this single proposed new 
feature for demonstration purposes. 

Creating static forms and transitioning 
between them the Dialog Author "storyboards" 
the new application. No real data is displayed, 
but a user will be able to get the "look and 
feel" of the proposed feature. 

The prototype dialog can be compiled, 
prepared and downloaded to a set of test 
decoders. Working with actual decoders the 
Dialog Author and/or his/her reviewers find 
changes they want to make to the dialog. 

This process continues until the 
storyboarded version is considered polished 
enough for use. 

The Dialog Author would then decide what 
downloaded data was required to support the 
application. In many cases the data will already 
be available in the pre-defined Record Sets. 

In other cases new Record Set Revisions 
will have to be defined and placed in new 
Record Set Lists. This is when the 
development process shifts from Dialog 
Authoring to Data Designing. 



As wonderful and powerful as RDBMS 
concepts are, they are still very tricky. A Data 
Designer will need far more training than a 
Dialog Author. 

The Dialog Author would specify the new 
Record Set Revisions and how they are formed 
from existing edited tables. 

Occasionally the required data will not 
already be part of a pre-existing edited data. In 
this case the new RDBMS tables and/or 
columns must be specified. Frequently the 
RDBMS can be used to fill in new columns 
with default values based on other columns. 

Data capture routines must be developed 
and/or modified to capture the new data. This 
step can be very simple if the data source uses 
a standard interface. When capturing data from 
a pre-formatted source this step would take a 
bit longer. 

GUI front-end programs that access the 
modified RDBMS tables will have to be 
modified to access the new data. However, 
because of the Client/Server architecture they 
can continue to use the data in the old format 
without modification. 

Even after updating the format of the 
RDBMS tables, the current Record Set 
Revisions will still be supported. Their data 
will be downloaded without change; they 
simply ignore the new data. 

Once the edited data is defined, the 
downloaded data can be defined and a new 
Record Set List exported to the Dialog 
Authoring system. 

The Dialog Editor can now be used to 
refine the dialog to use the actual data rather 
than being a simple storyboard. 

After extensive testing, the new feature 
would reach the point where a field trial can be 
attempted. If anything goes wrong with the 
field trial the system can be quickly rolled back 
to the prior dialog. The OSD Information 
gateway is still fully capable of downloading 
the old dialog and the data in the format that it 
requires. The system can be rolled back. 

An Alternate Update Scenario 

It would be just as valid to start with a new 
source of data that has become available. 

After figuring out how to capture this data, 
the Data Designer would determine how to 
store this data in normalized RDBMS tables. 

Data Designers could then enumerate 
useful Record Set Revisions using this data. 

Dialog Authors would then attempt to write 
new Dialogs after selecting the Record Set List 
that seemed most useful to them. 

SUMMARY 

Development of Interactive Information 
Services for OSD Decoders will be an ongoing 
process as the market adjusts to what 
information consumers desire and how they 
wish to access it. 

Staying responsive to these changing 
requirements mandates that the set-top OSD 
decoder be downloadable. 

Downloadability alone merely allows new 
applications to be developed. More powerful 
features are required to support rapid 
development and non-intrusive deployment of 
new applications. 

Zenith's HT -2000 decoder system is an 
example of a complete development system for 
Interactive OSD Applications. 

The OSD Information Gateway is 
developed under a Client/Server architecture 
using GUI Application Generators and the 
OS/2RDBMS. 

Data is captured and normalized into 
RDBMS tables. Data can be merged from 
many sources and even operator edited. Other 
RDBMS tables control the translation of this 
data into downloadable Record Sets. 

The HT -2000 decoder uses a state driven 
interpretive model with built-in primitives for 
screen painting and data manipulation. It 
accepts downloaded behavior without risk of 
becoming permanently frozen by a defective 
download or excessively disrupting viewers. 

1993 NCTA TECHNICAL PAPERS-- 236 


