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ABSTRACT

Digital carnage of data via
CATV networks is becom:.ng more
prevalent with each passing year.
Digital radio services are presently
being offered by mmerous cable
operators. Digital campression of
video is just over the horizon, and
octher data services will 1likely
follow. Although these digital
dellve.ry systems do not exhibit the
impairments of their analog
counterparts, bit errors may cause
catastrophic distortions. Forward
error correction is one aspect of
a solution to this problem.

This paper introduces the CATV
system engineer to the concepts of
forward error correction, and
discusses its benefits, complexity,
and limitations. It also touches on
the interdependence of forward error
correction with channel equalization
and efficient modulation. Several
important concepts, such as coding
gain, are discussed in detail.

INTRODUCTTON

A CATV system meets the
definition of a commmnication system
because it connects multiple
information sources to users of this
information. A general
communication system is illustrated
in Figure 1. For purposes of this
paper, the source is any source of
television programming; the source
encoder might be some form of video
and audio compression. The forward
error encoder and decoder in Figure
1 are the subject of this paper.

Error control techniques can be
very effective against random noise
impairments, but are not a panacea
for microreflections on digital
transmission in a CATV network.
Error control can be teamed with
channel equalization, as shown in
Figure 1, to develop a very robust
and cost effective commmnication
channel. Both the rate at which the
errors occur ard their distribution
must be known before the optimum
error correction scheme may be
designed. This may be accomplished
by a combination of simulation,
laboratory tests, and field tests.

Error control applied to future
CATV networks using video and audio
compression (the source encoder and
source decoder in Figure 1) is
essential because conpression
eliminates the redundancy from the
original analog signals. Exrrors
occurring during transmission may
cause severe impairments to the
reconstituted analog signals. In
general, errors will propagate
through the decompression process.

HISTORY

The history of error control
began in 1948 with Claude Shannon's
famous paper on channel capacityl.
His channel capacity theorem says
the following:

C = W logy(1 +S/N) bits/sec (1)
where:
C = capacity in bits/sec
W = bandwidth in Hz
= signal power
N = noise power
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What Shannon said was that the
noise limits the rate at which we
can send information, but not the
accuracy. Today designers are
moving ever closer to this limit
with a combination of error control
and efficient modulation. Shammon's
work also tells us it is more cost
effective to employ error coding
than to try to build an error-free
channel.

During the 1950's and 1960's
the search for good codes continued.
It was during this period that two
mathematical bases developed to
solve the error coding problem.
This concept is illustrated in
Figure 2. The two bases are the
algebraic and probabilistic
approaches. The algebraic codes are
nost commonly known as "block
codes". The first of these were
introduced in 1950 by Hamming; his
are a class of single error
correcting codes. Ancther major
milestone occurred in 1960 when
Bose, Ray-Chaudhuri, and Hocquenghem
founrd a class of multiple-error—-
correcting codes now known as BCH
codes . Reed and Solomon also
developed their codes in 1960; these
codes are related to the BCH, but
for non-binary channels.2,3

The second mathematical
approach to coding, the
probabilistic approach, led to the
development of "“convolutional"™ or
"tree" codes. In the late 1950's,
studies led to the notion of
sequential decoding and to the
introduction of non-block codes of
indefinite length. However, the
most well known algorithm, the
Viterbi algorithm, did not appear
until 1967. Such techniques have
allowed reception of digital data
from deep space probes. The steady
improvement in the performance of
telephone modems has also resulted
from advances in error coding and
sophisticated modulation techniques.

ERROR CONTROL AND BEOUALIZATTON

Error control is very effective
at mitigating the impairments caused
by additive noise. A CATV channel
presents other phenomena that limit
channel performance. Chief among
these are microreflections due to
impedance  mismatches at the
television receiver or untemrminated
taps. This results in intersymbol
interference (ISI), which is the
tendency of received 1s to flow
into one ancther. This can
not be overcome by increasing signal
power; there is an ISI noise floor
that increases with signal power.
ISI may be overcame by adaptive
equalization, which is outside the
scope of this paper. Error control
ard adaptive equalization may be
combined to result in a very robust
communication system (refer to
Figure 1).

DEFINITIONS

Certain terms appear throughout
the literature of coding theory.
These are defined here for the
corvenience of the reader:2:3

Symbol A symbol is a group of bits
within an error control block. It
is also defined as a signal
representing a group of "k" bits in
some analogy manner, such as
amplitude or phase. Thus, there
are error control symbols ard
modulation symbols.

Weight The weight of a symbol,
codeword, or "wector" is the number
of non—-zero elements.

Hamming distance The Hamming
distance between two vectors having
the same number of elements is
defined as the number of positions
in which the elements differ. This
is a key concept in error control
and will be discussed in more
detail later in this paper.

1992 NCTA Technical Papers- 457



Minimm distance The mnminimum
distance "d" of a linear block code
is the smallest distance between
pairs of different codewords in the
code.

Codeword A codeword or "code block"
is a group of bits or symbols made
up of information elements and
parity (error control) elements.

Code rate Assume that a block
encoder accepts information in
successive "k"-bit blocks and for
each k bits generates a block of "n"
bits, where n > k. The code rate R
= k/n is a dimensionless ratio that
indicates the portion of an encoded
block that carries information.

Overhead This is the percentage of
parity bits that must be appended to
the information bits in constructing
a code.

Hard decision A hard decision
demodulator makes an absolute 1/0
choice on each received bit (or
symbol). The symbol is guantized to
two levels.

Soft decision In making a soft
decision, the demodulator makes a
bit-quality measurement on each bit
or symbol. The symbol is quantized
to more than two levels.

Erasure This is the process of
flagging a bit or symbol as
unreliable. It is the result of a
soft decision. This flag is passed

along to the error control
circuitry.
Coding gain This term describes

the amount of improvement that is
achieved when a particular coding
scheme is used. Figure 3
illustrates coding gain on a
logarithmic plot of bit error rate
vs Ep/Ng (energy/bit divided by
spectral noise density). At low
signal to noise ratios, the gain
will become negative.
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Vector This term is based in
linear algebra and is familiar to
us from physics. In coding theory
vector space is one of the most
important algebraic concepts. The

vector provides a convenient
representation of field elements
that may be implemented with

simple digital functions. The term
is also used in matrix notation,
where the vector consists of the
coefficients of a polynomial.
Refer to section 3.3 of reference
2.

The syndrome The syndrome is
defined in the dictionary as "a
nutber of symptoms  occurring
together and characterlzmg a
specific disease".® In coding
theory, a syndrome is a seguence
of discrepancies which occur when
received parity bits are compared
with calculated parity bits. The

may take on the form of a
“yector" in a matrix. Calculations

of syndromes are used in many

decoding algorithms to locate
errors in received data.
Constraint 1 In a

convolutional code, the constraint
length is the number of data frames
used in the generation of the
encoded data. Each input frame may
consist of one or more bits. The
process occurs on a continuous
basis. In terms of the actual
circuit elements, the constraint
length is the length of the input
data shift register in the encoder.

Galois field A field having a
finite number of elements is called
a finite or Galois (pronounced
gall-wa) field. It is denoted by
GF(q), where g is the number of
elements in the field. These
fields are named after Evariste

Galois (1811-1832), a French
mathematical prodigy who
established group theory

mathematics by age 17. 2 Chapter 4
in reference 3 treats this theory
in Qetail.
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THE DISTANCE CONCEPT

This concept is crucial in
visualizing the operation of error
control circuitry. Figure 4
illustrates "decoding spheres" in a
geometric fashion. Recall the
definition of minimm distance dy.
We will define t as the mumber of
errors that a particular code can
correct. If more than t errors
occur in transmission, the decoder
may incorrectly decode the data or
it may indicate with a flag that it
can not decode the
nmessage. 3

In Figure 4, the code is
designed so that the minimm
distance between codewords is
defined as:

dz2t+1 (2)

where t is the number of errors
that can be corrected. A codeword
received error free will lard at the
center of a sphere. If t errors
occur, the codeword will be on the
surface of the sphere, and the
decoder will correct the error(s).
Received codewords with more than t
errors may fall between spheres or
within ancther sphere; those
falling in ancther sphere will ke
incorrectly decoded. Those falling
between spheres may or may not be
correctly decoded, but would be
erased in a soft decision decoder.
One can see that the minimm
distance is a critical property of a
code.

BIOCK CODES
In a block (algebraic) code the
encoder accepts k information bits
and appends r parity-check bits to
form a block of n bits, such that:
n=k+r (3)

vwhere n = block length
r = number of parity bits
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The code is referred to as an
(n,k) code. The code rate R is k
divided by n. Each block is
independent of all others; the check
bits are completely determined by
the information bits within the same
codeword. Also, there are 2K
codewords in the code set. The code
is designed to make the codewords
very different from each other to
resist channel errors.

Arithmetic operations in the
Galois field GF(2) are simple
because no overflow or round-off
error is permitted. The operations
of addition and multiplication are
mod-2. This is illustrated in the
following tables:

+]0 1 * | 0 1
olo 1 olo o
11 0 1|0 1

ADDITTION MULTTPLICATION

Addition bit-by-bit is
accomplished with an "X-OR" gate.
Multiplication is done with an "AND"
gate.

Polynomial arithmetic in a
Galois field (in this case GF(2))
can be used in the description of
block codes. Fortunately, digital
logic circuits may be constructed to
mimic this special polynomial
arithmetic. These circuits take the
form of digital filters, and are
constructed of shift register
elements, X-OR gates, AND gates, and
miltiplexers (Figure 5). The form
of the encoders and decoders are
similar.

We choose for this paper
"binary cyclic block codes" to
illustrate the relationship of the
GF(2) polynomial arithmetic to the
actual circuits. We do so because
these codes have proven useful and
efficient in practice. Binary
cyclic block codes are a subset of
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linear block codes, and fall in the
"algebraic school" circle of Figure
2. A binary code must meet two
criteria to be cyclic:

a. The code is linear; bit-by-
bit addition of two codewords in
GF(2) is again a codeword.

b. Any cyclic (end arourd)
shift of a codeword is also a
codeword. 2

Chapters 4, 5 and 6 of
reference 3 give the reader a clear
understanding of the mathematical
basis and implementation of cyclic
block codes. The polynomial
description of a codeword is also
found in chapter 4 of reference 2 as
follows (in general form):

let c(x) =cg + cpx + %2 +
eee + Cpa1XItT (4)
vwhere n = block length, and the
polynomial is of degree n-1. Now we
will develop an example, as shown in
Figure 6. If the information
polynomial is:

i(x) =ig + igx + i2x2 + ..

co + dpogxKTl (5)
and the generator polynomial is:
gx) =x%t+x+1 (6)

(derivation of generator polynomials
is given in references 2 and 3)

then the codeword takes the form:
cx) =xrKix) + tx) (7)

where t(x) is the remainder, and is
equal to:

t(x) = Ry(x) (¥ Ki(x)] (8)

this reads "t(x) is the remainder
after dividing by g(x)".
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arnd thus

Ryx)lec(x)] =0  (9)

The encoder in Figure 6 is a
systematic encoder that implements a
divide-by-g(x) using shift registers
and X-OR gates; it produces a
(15,11) Hamming code. Assume that
the register stages are first
cleared to zero. Eleven information
bits are shifted into the circuit;
division begins after four clock
shifts. The circuit produces eleven
information bits followed by four
parity bits, to produce a fifteen
bit codeword. The four parity bits
are the result of the division.

Refer again to Figure 6. As
the codeword passes through the
channel, noise may cause bit errors.
This noise is represented as the
error polynomial e(x), which has
degree n-1. The sum of the codeword
c(x) and noise e(x) is v(x), the
received codeword:

v(x) = c(x) + e(x) (10)

The decoder in the figure implements
a divide by g(x), where g(x) is the
same generator polynomial used in
the encoder. If no error has
occurred, the remainder is zero. If
the remainder is non-zero, it is
calculated as:

s(x) =x3 + 1 (11)

s(x) is the syndrame defined
earlier! The decoder circuit in the
figure calculates s(x) by dividing
by g(x); if s(x) is non-zero, the
appropriate information bit is
inverted, vyielding the original
information codeword c(x). The
encoder and decoder of Figure 6
constitute a single~error-correcting
system. Note the simplicity of the
cirauit, but remember it is limited
to correcting single errors.



The example just presented is of a
binary block code; the coefficients
of all the polynomials are either
binary 0 or 1. As you may recall
from ocur brief history lesson, Reed
and Solomon developed multiple error
correcting codes in a 1960 paper.
These codes (and there are many) are
are very effective in the presence
of burst errors. The overhead of
these codes is typically 10% or
less, making them very efficient.
However the decoding hardware is far
more complex than described above
for the binary code. Algcrithms for
decoding of R/S codes must calculate
two syndromes, one for error
location, and one for error
magnitude. This is because the
mathematics is over a Galois field
GF(2M), where m is a small integer
on the order of 7 or 8. In
hardware,a parallel bus m bits wide
is required. The data bits are
arranged into "symbols" of m bits,
and the arithmetic calculations are
done on these symbols. A number of
sophisticated decoding algorithms
have been developed for the many
Reed Solomon codes. They have found
many practical applications, such as
compact discs.

CONVOIUTIONATL, CODES

These codes are based on a
probabilistic approach to the
problem of error control. They were
originally called recurrent codes,
and are also referred to as tree
codes, from the use of a tree or
trellis diagram used to visualize
the sequence of events. A
convolutional code does not have a
simple block structure, with each
codeword  independent from all
others. Rather, the codewords are
generated using a sliding window
over the information symbols. A
continuous stream of encoded symbols
is produced, where successive
codeword frame are coupled together
by the encoder.

Figure 7 illustrates a generic
convolutional encoder, and will be
used to define terms common in the
literature. The input information
is broken into information frames
of kg symbols; m is the number of
these frames stored in the encoder
shift register. The length of the
shift register is m X kg, which is
the constraint length, denoted by
v. The output codeword frame is
made up of ng symbols. The code is
referred to as an (ng,kg) code. K
is the wordlength of the code ard is
equal to (m + 1)kg. Blocklength N
is egqual to (m + 1)ng, and is
the length of the cutput code that
may be influenced by an input frame
ko The rate R of the code is
ko/ng. The input to the encoder
is data at a rate of kg symbols per
second, and the output is data at
a rate of ng symbols per second.3

Next we will consider the
mathematical basis for these codes.
We used a generator polynamial in
constructing a block code.
Convolutional codes require a set of
multiple polynomials to describe
them; these are best described by a
mathematical matrix. Matrix notation
provides a means of writing a number
of simultaneous equations
(polynomials) in compact form.
Appendix A of reference 2 presents a
summary of matrix definitions and
manipulations.

A matrix is made up of row and

column vectors, whose elements are
the coefficients of the

polynamials.

The generator-polynomial matrix
is given by:

G(x) = [9i§(X)] (12)

This is a kg by ng matrix of
polynomials. Further, if d(x) is a
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set of kg information polyncmials
and c(x) is a matrix of ng codeword
ploynomials, then:

c(x) = d(x)g(x) (13)

Also, there is a parity check matrix
H(x) that satisfies

G(x)Hx)T =0 (14)

and there is a syndrame-polyncmial
vector given as

s(x) = v(x)Hx)T (15)

where v(x) represents the received
codewords.

We will now go on to describe
the tree and trellis structures, as
these are very useful in visualizing
the generation of the convolutional
code. We will use an example taken
from a paper by Batson. 4 Figure 8
shows a simple encoder made up of a
three stage shift register, three
XOR gates, and a multiplexer. This
is a (3,1) tree encoder. The
coefficients of the generator
polynomials specify which stages of
the shift register are connected to
each modulo 2 adder. In Figure 9,
we see the tree that describes the
operation of the encoder. Assume
the shift register contains all
zero's to start the sequence. 1In
the tree, an input of zero causes
the circuit to follow the upper
branch, a logic one the Ilower
branch. The labels on the branches
indicate the resulting output code.
An input seguence of 1011 results in
an output sequence of 111 101 01l
010. It can be seen that this tree
would grow very large after a
relatively short input stream, and
would be unwieldy.

An alternate structure which is
much more compact is the txrellis
diagram. This may be seen in Flgure
9. The state of the encoder is the
most recent contents of the kg-1

stages of the encoder shift
register. Time is from left to
right. The circuit steps from state
to state at clock times. The path
is up for a logic zero, and down for
a logic 1. The encoded output bits
are shown on the branches. The
repetitive structure of the trellis
is immediately apparent.

The trellis structure is useful
is understanding decoding
algorithms for convolutional codes,
such as the Viterbi algorithm? ,
which has found wide application.
It basically attempts to find a
valid path through the trellis that
is as close as possible to the
received sequence. This method is
very effective, but it should be
noted that the hardware
requirements for the Viterbi
decoder grow exponentially with
constraint length.

The coding gain of the Viterbi
algorithm may be improved by the
use of a soft decision
demodulator. Such a demodulator
takes into account the distance of
a received symbol from the center
of it's decoding sphere. This is
accomplished with an analog-to-
digital converter (A/D) to quantize
the received signal.

We made brief mention of the
syndrame vector earlier. Next, we
will illustrate its use in a
syndrome feedback decoder of a
convolutional code. Figure 10
illustrates both the encoder and
decoder for such a code. The
encoder and decoder both calculate
the same parity bits if the data is
received error-free. However, if a
data bit is received in error, the
locally calculated parity will
differ from the received parity.
When this difference occurs, a
logic 1 will appear in the syndrome
register. It is the function of
the decoder decision table to find
the most 1likely bit error
location. 2
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More than one error pattern can
result in the same syndrome; the
decoder will choose the pattern with
the least errors and compensate for
that pattern.

One  more example of a
convolutional encoder/decoder
combination is illustrated in Figure
11; the Wyner-Ash code is |used
here.3/5 . The decoder uses the
syndrome concept. The Viterbi
decoder described earlier is a
better method of improving coding
gain.

INTERLFAVING AND CONCANTENATED
CODES

Figure 2 illustrates how these
two techniques relate to block codes
and convolutional codes. Figure 12
depicts a hardware block diagram of
a system employing these techniques.

Interleaving is used to
transform a bursty channel into an
independent error  channel by
scrambling the encoded synbols
before transmission. An interleaver
structure is built from
semiconductor memory in a
rectangular array. Encoded data is
written into the array by rows and
out by columns before transmission.
After reception and decoding by the
decoder, the process is reversed.
This techniques has proven effective
in satellite links that are subject
to long bursts of errors.

Concantenated codes are used to
increase coding gain. A Reed-
Solomon code is used with the
Viterbi decoder in Figure 12 due to
the bursty nature of uncorrected
errors out of the Viterbi
decoder.2:3

CONCIIUSTIONS
This paper is intended as an

introduction to error control theory
for the CATV system engineer. In
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order to determine the optimm
strategy to develop a practical
digital delivery system for CATV, a
nurber of factors should be
considered:

1. The worst-case allowable
synbol-error-rate. This determines
the required coding gain.

2. 'The enviromment in which
the system will operate, to include
channel C/N, expected reflections,
and other impairments.

3. The type of digital
modulation selected .(eg, 16QAM,
640AM, etc). The digital channel
bandwidth, the allowable signal
power relative to AM channels, and
any effect on those AM channels
must be considered.

requlred parity
which increases the

4, The
overhead,

sympol rate.

5. The distribution of errors
in the chamel. A CATV chamnel is
subject to random errors, not burst
errors.

6. The behavior of the
required adaptive equalizer under

various conditions.

7. The circuit complexity and
cost of the hardware, especially in
the subscriber terminal.

Figure 13 illustrates the
likely functional blocks in a CATV
subscriber terminal employing
digital data delivery. The
demodulator, adaptive equalizer,
error decoder, and decompression
hardware must be designed to
operate in concert. A properly
designed system promises to deliver
consistent high quality video and
audio to all subscribers.



NPUT _ | BLOCK NTERLEA VITERBI BLOCK
el I e e | ’(:)“‘) DECOER [ > DR ey [ 2BUTPUT
CONVOLUTIONAL T
ENCODER NOISE
INTERLEAVING AND CONCANTENATED CODES
FIGURE 12
CABLE
DROE_3 RF MODULE ——————— 3 16QAM DEMOD —————3»!  ADAPTIVE EQUALIZER
L > ERROR DECODER > g‘égg{;”éggl o 3 UsER

SUBSCRIBER TERMINAL

FIGURE 13

1992 NCTA Technical Papers- 469



REFERENCES

1. Shannon, C.E., A Mathematical
Theory of Communication, Bell Syst.
Tech. J., Vol XXVII (1948)

2. Michelson, A, and levesque, A.,
Error-Control Techniques For Digital
Cammmnication, John Wiley & Sons,
New York, 1985

3. Blahut, R., Theory and Practice
of Error Control Codes, Addison-
Wesley Publishing Co., Reading
Mass., 1983

470 1992 NCTA Technical Papers

4., Batson, B., A Description of
The Viterbi Decoding Algoritim,
NASA Report EE70-8008(U), May 1970

5. Wyner, A., and Ash, R.,
Analysis of Recurrent Codes, IEEE
Trans. Inf. Theory, IT-9 (1963):
143-156

6. Webster's New World Dictionary,

The World Publishing Company,
Cleveland, 1964



