
APPLICATION OF ERROR <XlN'.mOL TECliNIQUES 'ID DIGITAL 
TRANSMISSION VIA CATV NE:M:>RKS 

JOHN T. GRIFFIN 

JERROID cnMJNICATIONS 
APPLIED MEDIA lAB 

Digital carriage of data via 
CATV networks is becoming Irore 
prevalent with each passing year. 
Digital radio services are presently 
being offered by numerous cable 
operators. Digital compression of 
video is just over the horizon, am 
other data services will likely 
follow. Although these digital 
delivery systems do not exhibit the 
inpainnents of their analog 
counterparts, bit errors may cause 
catastrophic distortions. Fo:rward 
error correction is one aspect of 
a solution to this problem. 

'!his paper introduces the CATV 
system engineer to the concepts of 
fo:rward error correction, am 
discusses its benefits, complexity, 
am limitations. It also touches on 
the interdeperrlence of fo:rward error 
correction with channel equalization 
am efficient modulation. Several 
important concepts, such as coding 
gain, are discussed in detail. 

lNIROIXJCI'ION 

A CATV system meets the 
definition of a connnunication system 
because it connects multiple 
infonnation sources to users of this 
infonnation. A general 
conmrunication system is illustrated 
in Figure 1. For purposes of this 
paper, the source is any source of 
television programming; the source 
enc:xJder might be some fonn of video 
am audio compression. '!he forward 
error enc:xJder am decoder in Figure 
1 are the subject of this paper. 

Error control teclmiques can be 
very effective against ramam noise 
impainnents, but are not a panacea 
for microreflections on digital 
transmission i.'P). a CATV network. 
Error control can be teamed with 
channel equalization, as shown in 
Figure 1, to develop a very robust 
am cost effective c:omrm.mication 
channel. Both the rate at which the 
errors occur am their distribution 
:nrust be known before the optimum 
error correction scheme may be 
designed. '!his may be acx::omplished 
by a combination of simulation, 
laborato:ry tests, am field tests. 

Error control applied to future 
CATV networks using video am audio 
compression (the source encoder am 
source decoder in Figure 1) is 
essential because compression 
eliminates the re.dllOOancy from the 
original analog signals. Errors 
occurring during transmission may 
cause severe inpainnents to the 
reconstituted analog signals. In 
general, errors will propagate 
through the decompression process. 

IITS'IORY 

'!he histo:ry of error control 
began in 1948 with Claude Shannon's 
famous paper on channel capacity1. 
His channel capacity theorem says 
the following: 

C = W log2 (1 +S/N) bits/sec (1) 
where: 

c = capacity in bitsjsec 
w = bandwidth in Hz 
S = signal power 
N = noise power 
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What Sharmon said was that the 
noise limits the rate at which we 
can send infonnation, but not the 
accuracy. Today designers are 
m:wing f!Ner closer to this limit 
with a combination of error control 
am efficient m:xiulation. Shannon Is 
work also tells us it is more cost 
effective to employ error coding 
than to try to build an error-free 
channel. 

During the 1950's and 1960's 
the search for good codes continued. 
It was during this period that two 
mathematical bases developed to 
solve the error coding problem. 
'!his concept is illustrated in 
Figure 2. 'lhe two bases are the 
algebraic am probabilistic 
approaches. 'lhe algebraic codes are 
most commonly known as "block 
codes11

• 'Ihe first of these were 
introduced in 1950 by Hamming; his 
are a class of single error 
correcting codes. Another major 
milestone occurred in 1960 when 
Bose, Ray-O'laudhuri I am Hocquenghem 
fourrl a class of multiple-error
correcting codes now known as BCH 
codes Reed and Solomon also 
d£Neloped their codes in 1960; these 
codes are related to the BCH, but 
for non-binary channels. 2, 3 

'!he secorrl. mathematical 
approach to coding, the 
probabilistic approach, led to the 
development of "convolutional" or 
"tree11 codes. In the late 1950's, 
studies led to the notion of 
sequential deccxling am to the 
introduction of non-block codes of 
indefinite length. HowfNer, the 
most well known algorithm, the 
Viterbi algorithm, did not appear 
until 1967. SUch techniques have 
allowed reception of digital data 
from deep space probes. '!be steady 
i.nprovement in the perfo:rmance of 
telephone modems has also resulted 
from advances in error coding an:i 
sophisticated m:xiulation techniques. 

ERROR CDNTROL AND m.JALIZATION 

Error control is very effective 
at mitigating the i.npainnents caused 
by additive noise. A CATV channel 
presents other phenomena that limit 
channel performance. Chief atoong 
these are microreflections due to 
impedance mismatches at the 
tel£Nision receiver or untenninated 
taps. 'Ibis results in i.ntersynixll 
interf~ (ISI} , which is the 
tendency of received ~ls to flow 
into one another. 'Ibis can 
not be overcome by increasing signal 
power; there is an ISI noise floor 
that increases with signal power. 
ISI may be overcome by adaptive 
equalization, which is outside the 
scope of this paper. Error control 
am adaptive equalization may be 
combined to result in a very robust 
connnunication system (refer to 
Figure 1}. 

DEFINITIONS 

certain tenns appear throughout 
the literature of coding theory. 
'Ihese are defined here for the 
convenience of the reader: 2, 3 

symbol A symbol is a group of bits 
within an error control block. It 
is also defined as a signal 
representing a group of "k" bits in 
some analog manner, such as 
amplitude or phase. 'Ihus, there 
are error control symbols am 
modulation symbols. 

Weight 'Ihe weight of a symbol, 
codeword, or ''vector'' is the number 
of non-zero elements. 

Hamning distance '!he Hamming 
distance between two vectors having 
the same rn.nnber of elements is 
defined as the number of positions 
in which the elements differ. '!his 
is a key concept in error control 
am will be discussed in more 
detail later in this paper. 
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Minimum distance The nuru.mum 
distance "d" of a linear block code 
is the smallest distance between 
pairs of different codewords in the 
code. 

Codeword A codeword or "code block" 
is a group of bits or symbols made 
up of infonnation elements and 
parity (error control) elements. 

Code rate Assume that a block 
encoder accepts infonnation in 
successive "k"-bit blocks and for 
each k bits generates a block of "n" 
bits, 'Where n > k. The code rate R 
= kjn is a dimensionless ratio that 
irxllcates the portion of an encoded 
block that carries infonnation. 

OVerhead This is the percentage of 
parity bits that must be appended to 
the infonnation bits in constructing 
a code. 

Hard decision A hard decision 
demodulator makes an absolute 1/0 
choice on each received bit (or 
symbol) • The symbol is quantized to 
two levels. 

Soft decision In making a soft 
decision, the demodulator makes a 
bit-quality measurement on each bit 
or symbol. The symbol is quantized 
to more than two levels. 

Erasure This is the process of 
flagging a bit or symbol as 
unreliable. It is the result of a 
soft decision. This flag is passed 
along to the error control 
circuitry. 

Coding gain This tenn describes 
the amount of inq;>rovement that is 
achieved 'When a particular coding 
scheme is used. Figure 3 
illustrates coding gain on a 
logaritlnnic plot of bit error rate 
vs Er/No (ene:rgyjbit divided by 
spectral noise density). At low 
signal to noise ratios, the gain 
will become negative. 
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Vector '!his tenn is based in 
linear algebra and is familiar to 
us from :physics. In coding theory 
vector space is one of the most 
i.np::>rtant algebraic concepts. 'Ihe 
vector provides a conv~ent 
representation of field elements 
that may be inq;>lemented with 
sinq;>le digital functions. '!he tenn 
is also used in matrix notation, 
where the vector consists of the 
coefficients of a polynomial. 
Refer to section 3. 3 of reference 
2. 

'!he syndrome The syndrome is 
defined in the dictionary as "a 
number of synptams occurring 
together and characterizing a 
specific disease". 6 In coding 
theory, a syndrome is a sequence 
of discrepancies 'Which occur 'When 
received parity bits are cx:mpared 
with calculated parity bits. '!he 
syndrome may take on the fonn of a 
"vector" in a matrix. calculations 
of syndromes are used in many 
decoding algoritlnns to locate 
errors in received data. 

Constraint lenath In a 
convolutional code, the constraint 
length is the number of data frames 
used in the generation of the 
encoded data. Each input frame may 
consist of one or more bits. The 
process occurs on a continuous 
basis. In tenns of the actual 
circuit elements, the constraint 
length is the length of the input 
data shift register in the encoder. 

Galois field A field having a 
finite number of elements is called 
a finite or Galois (pronounced 
gall-wa) field. It is denoted by 
GF ( q) , 'Where q is the number of 
elements in the field. These 
fields are named after Evariste 
Galois (1811-1832), a French 
mathematical prodigy 'Who 
established group theory 
mathematics by age 17. 2 Chapter 4 
in reference 3 treats this theory 
in detail. 



-5 
10 

-6 
10 

-7 SYMBOL 10 
ERROR RATE 

WITH ERROR CORREcrJON 

-lOL...&.-~~~~~~-+--i~~-~--lp--lO 16 19 22 23 24 

VNo dB 

CODING GAIN 
FIGURE 3 

ODE:WORDS 

d = distance 

WJTH NOISE 

• 
• RECEJVED CODEWORDS\~ 

'.-............... • 

• 
DECODING SPHERES 

FIGURE 4 

1992 NCTA Technical Papers- 459 



'!HE DISTANCE OONCEPI' 

'nlis ex>ncept is crucial in 
visualizing the operation of error 
ex>ntrol circui+-:cy. Figure 4 
illustrates "decoding spheres" in a 
geometric fashion. Recall the 
definition of minimum distance dm· 
We will define t as the rn.nnber of 
errors that a particular code can 
ex>rrect. If m::>re than t errors 
occur in transmission, the decoder 
may inCX>rrectly decode the data or 
it may irrlicate with a flag that it 
can not decode the 
message. 3 

In Figure 4, 
designed so that 
distance between 
defined as: 

the code is 
the minimum 

codewords is 

d~2t+1 (2) 

where t is the rn.nnber of errors 
that can be ex>rrect.ed. A codeword 
received error free will land at the 
center of a sphere. If t errors 
occur, the codeword will be on the 
surface of the sphere, and the 
decoder will correct the error (s) . 
Received codewords with more than t 
errors may fall between spheres or 
within another sphere; those 
falling in another sphere will be 
inCX>rrectly decoded. '!hose falling 
between spheres may or may not be 
ex>rrectly decoded, but would be 
erased in a soft decision decoder. 
One can see that the nu.ru.nrurn 
distance is a critical property of a 
code. 

BlOCK CDDFS 

In a block (algebraic) code the 
encoder accepts k infonnation bits 
and appends r parity-check bits to 
fonn a block of n bits, such that: 

n = k + r (3) 

where n ·= block length 
r = mnnber of parity bits 
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'!he code is referred to as an 
(n,k) code. '!he code rate R is k 
divided by n. Fach block is 
independent of all others; the check 
bits are canpletely detennined by 
the infonnation bits within the same 
codeword. Also, there are 2k 
codewords in the code set. '!he code 
is designed to make the codewords 
very different from each other to 
resist channel errors. 

Arithmetic operations in the 
Galois field GF(2) are sin'ple 
because no overflow or round-off 
error is pennitted. '!he operations 
of addition and multiplication are 
m:xi-2. 'nlis is illustrated in the 
following tables: 

+ 0 1 

0 0 1 
1 1 0 

ADDrriON 

* 1 o 1 

0 0 0 
1 0 1 

MUDI'IPLICATION 

Addition bit-by-bit is 
accomplished with an "X~R" gate. 
Multiplication is done with an "AND" 
gate. 

Polynomial arithmetic in a 
Galois field (in this case GF(2)) 
can be used in the description of 
block codes. Fortunately, digital 
logic circuits may be constructed to 
mimic this special polynomial 
arithmetic. 'Ihese circuits take the 
fonn of digital filters, and are 
ex>nstructed of shift register 
elements, X~R gates, AND gates, and 
multiplexers (Figure 5). '!he fonn 
of the encoders and decoders are 
similar. 

We choose for this paper 
"binary cyclic block codes" to 
illustrate the relationship of the 
GF(2) polynomial arithmetic to the 
actual circuits. We do so because 
these codes have proven useful and 
efficient in practice. Binary 
cyclic block codes are a subset of 
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linear block cxxies, and fall in the 
"algebraic school" circle of Figure 
2. A binary cxxie must meet two 
criteria to be cyclic: 

a. 'lhe cxxie is linear; bit-by
bit addition of two codewo:rds in 
GF(2) is again a codeword. 

b. Aey cyclic (end around) 
shift of a codeword is also a 
codeword. 2 

Olapters 4, 5 and 6 of 
reference 3 give the reader a clear 
und~ of the mathematical 
basis and inplementation of cyclic 
block codes. 'lhe polynomial 
description of a codeword is also 
fourxi in chapter 4 of reference 2 as 
follCMS (in general fonn) : 

let c(x) = co + clx + c2x2 + 
••. + Cn-1xn- (4) 

where n =block length, and the 
polynomial is of degree n-1. Now we 
will develop an example, as shCMn in 
Figure 6. If the infonna.tion 
polynomial is: 

i(x) = io + i 1x + i 2x2 + .• 
•• + ik-1xk-1 (5) 

and the generator polynomial is: 

g(x) = x4 + x + 1 (6) 

(derivation of generator polynomials 
is given in references 2 and 3) 

then the codeword takes the fonn: 

c(x) = xn-ki(x) + t(x) (7) 

where t(x) is the remainder, and is 
equal to: 

t(x) = -Rg(x)[xn-ki(x)] (8) 

this reads "t(x} is the remai.rrler 
after dividing by g(x)". 
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and thus 

Rg(x)[C(X}] = 0 (9) 

'lhe encoder in Figure 6 is a 
systematic encoder that inplements a 
divide-by-g(x) using shift registers 
and X-QR gates; it produces a 
(15,11) Hamming code. Assume that 
the register stages are first 
cleared to zero. Eleven infonna.tion 
bits are shifted into the circuit; 
division begins after four clock 
shifts. 'lhe circuit produces eleven 
infonna.tion bits followed by four 
parity bits, to produce a fifteen 
bit codeword. 'lhe four parity bits 
are the result of the division. 

Refer again to Figure 6. As 
the codeword passes through the 
channel, noise may cause bit errors. 
'!his noise is represented as the 
error polynomial e(x) , which has 
degree n-1. 'lhe sum of the codeword 
c (x) and noise e (x) is v (x) , the 
received codeword: 

v(x) = c(x) + e(x) (10) 

'lhe decoder in the figure inplements 
a divide by g(x) , where g(x) is the 
same generator polynomial used in 
the encoder. If no error has 
cx::curred, the remainder is zero. If 
the remainder is non-zero, it is 
calculated as: 

s(x) = x3 + 1 (11) 

s (x) is the syrDrale defined 
earlier! 'lhe decoder circuit in the 
figure calculates s(x) by dividing 
by g(x); if s(x) is non-zero, the 
appropriate infonnation bit is 
inverted, yielding the original 
infonna.tion codeword c(x). 'lhe 
encoder and decoder of Figure 6 
constitute a single-error-correcting 
system. Note the sinplicity of the 
circuit, but remember it is limited 
to correcting single errors. 



'!he exaiT!Ple just presented is of a 
bi.na:ry block code; the coefficients 
of all the polynomials are either 
binary 0 or 1. As you may recall 
from our brief histo:cy lesson, Reed 
ani Solom::m developed multiple error 
correcting codes in a 1960 paper. 
'Ihese codes (ani there are many) are 
are very effective. in the presence 
of burst errors. '!he cwerllead of 
these codes is typically 10% or 
less, making them very efficient. 
HCMever tl"..e decoding hardware is far 
more c::arrplex than described above 
for the binary code. Algorithms for 
decoding of R/S codes must calculate 
two synjrames, one for error 
location, ani one for error 
magnitude. '!his is because the 
mathematics is over a Galois field 
GF(2m), where m is a small integer 
on the order of 7 or 8. In 
hardware,a parallel bus m bits wide 
is required. '!he data bits are 
arranged into "symbols" of m bits, 
ani the arithmetic calculations are 
done on these symbols. A l1l.li'IIDer of 
sophisticated decoding algorithms 
have been developed for the many 
Reed Solomon codes. '!hey have found 
many practical applications, such as 
conpact discs. 

<nNVOIIJl'IONAL CX>DES 

'Ihese codes are based on a 
probabilistic approach to the 
problem of error control. '!hey were 
originally called rec:urrent codes, 
ani are also referred to as tree 
codes, from the use of a tree or 
trellis diagram used to visualize 
the sequence of events. A 
convolutional code does not have a 
si.nple block structure, with each 
codeword independent from all 
others. Rather, the codewords are 
generated using a slidi.rg w:irnow 
over the infonnation symbols. A 
continuous stream of encoded symbols 
is produced, where successive 
codeword frame are coupled together 
by the encoder. 

Figure 7 illustrates a generic 
convolutional encxxler, ani will be 
used to define tenns conunon in the 
literature. '!he input infonnation 
is broken into infm:mat.:iat ftanes 
of ko symbols; m is the l1l.li'IIDer of 
these frames stored in the encxxler 
shift register. '!he length of the 
shift register is m X Jco, which is 
the CDlStraint leufth, denoted by 
v. '!he output codeword ti:ame is 
made up of no symbols. '!he code is 
referred to as an (Il(),Jco) code. K 
is the wmdl.eufth of the code ani is 
equal to (m + l)kQ. mockl.eufth N 
is equal to (m + 1)Il(), ani is 
the length of the output code that 
may be influenced by an input frame 
ko· '!he rate R of t.lte code is 
kolno. '!he input to the encoder 
is data at a rate of ko symbols per 
seco:rxi, ani the output is data at 
a rate of no symbols per secom.3 

Next we will consider the 
mathematical basis for these codes. 
We used a generator polynanial in 
constructing a block code. 
Convolutional codes require a set of 
multiple polynomials to describe 
them; these are best described by a 
mathematical :matrix. Matrix notation 
provides a means of writing a l1l.li'IIDer 
of simultaneous equations 
(polynomials) in conpact fonn. 
Appendix A of reference 2 presents a 
sunnna:cy of matrix definitions ani 
manipulations. 

A matrix is made up of reM ani 
column vectors, whose elements are 
the coefficients of the 
polynomials. 

'!he generator-polynomial matrix 
is given by: 

G(x) = (gij(X)] (12) 

'Ibis is a ko by no matrix of 
polynomials. Further, if d(x) is a 
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set of ko infonna.tion polynomials 
and c(x) is a matrix of no codeword 
ploynomials, then: 

c(x) = d(x)g(x) (13) 

Also, there is a parity check matrix 
H (x) that satisfies 

G(x)H(x)T = 0 (14) 

and there is a syrrlrale-polynani al 
vector given as 

s(x) = v(x)H(x)T (15) 

where v(x) represents the received 
codewords. 

We will now go on to describe 
the tree and trellis structures, as 
these are very useful in visualizing 
the generation of the convolutional 
code. We will use an exanple taken 
from a paper by Batson. 4 Figure 8 
shows a sinq:>le encoder made up of a 
three stage shift register, three 
XOR gates, and a multiplexer. 'Ihis 
is a (3, 1) tree encoder. 'Ihe 
coefficients of the generator 
polynomials specify which stages of 
the shift register are connected to 
each modulo 2 adder. In Figure 9, 
we see the tree that describes the 
operation of the encoder. Assume 
the shift register contains all 
zero's to start the sequence. In 
the tree, an input of zero causes 
the circuit to follow the upper 
branch, a logic one the lower 
branch. 'lhe labels on the branches 
indicate the resulting output code. 
An input sequence of 1011 results in 
an output sequence of 111 101 011 
010. It can be seen that this tree 
would grow very large after a 
relatively short input stream, and 
would be unwieldy. 

An alternate structure which is 
much more compact is the trellis 
diagram. 'Ihis may be seen in Figure 
9. 'Ihe state of the encoder is the 
most recent contents of the ko-1 

stages of the encoder shift 
register. T:ilne is from left to 
right. 'lhe circuit steps from state 
to state at clock times. 'lhe path 
is up for a logic zero, and d.own for 
a logic 1. 'lhe encoded output bits 
are shCMn on the branches. 'lhe 
repetitive structure of the trellis 
is innnediately apparent. 

'lhe trellis structure is useful 
is urrlerstarxling deccxiing 
algoritlnns for convolutional codes, 
such as the Viterbi algorithm4 , 
which has found wide application. 
It basically attenpts to find a 
valid path through the trellis that 
is as close as possible to the 
received sequence. '!his method is 
very effective, but it should be 
noted that the hardware 
requirements for the Viterbi 
decoder grow exponentially with 
constraint length. 

'lbe coding gain of the Viterbi 
algorithm may be inq:>roved by the 
use of a soft decisicn 
dem:xiulator. SUch a demodulator 
takes into account the distance of 
a received symbol from the center 
of it's deccxiing sphere. 'lhis is 
ac:corrplished with an analog-to
digital converter (A/D) to quantize 
the received signal. 

We made brief mention of the 
syrdr:UJe vector earlier. Next, we 
will illustrate its use in a 
syndrome feedback decoder of a 
convolutional code. Figure 10 
illustrates both the encoder and 
decoder for such a code. 'lhe 
encoder and decoder both calculate 
the same parity bits if the data is 
received error-free. However, if a 
data bit is received in error, the 
locally calculated parity will 
differ from the received parity. 
When this difference occurs, a 
logic 1 will appear in the syndrome 
register. It is the function of 
the decoder decision table to firx:l 
the DKJSt l.ikel.y bit error 
location. 2 

1992 NCTA Technical Papers- 465 



000 
000 I 

I l~ 111 
000 I 

I 101 
111 I Is 010 

I 
000 I 

I 
100 

101 I 
I Oll 

111 I 
0 I 001 

INPUT BITS t 
010 I 

I 1!0 
I 

~ 
I 000 

100 I r.: 
I 111 

101 I 
1 I 101 I 

Oll I I 
010 

lll 
I 
I lOll 
I 

001 I 

I 011 
010 I 

I 001 
110 I L 

I 
ll•J 

CODE TREE 

00 

01 

10 

11 

STATE 
'l'l'NE 

TRELUS DIAGRAM 

FIGURE 9 

466 -1992 NCT A Technical Papers 



INPUT 
DATA 

t 
DATA 
IN 

DATA 

PARITY 

E(X) 
NOISE 

CONVOLUTIONAL SYNDROME FEEDBACK DECODER 

FIGURE 10 

E(X) 

WYNER-ASH ENCODER AND DECODER 

FIGURE 11 

SYNDROME 
DECODER 

DATA 
OUT 

1992 NCTA Technical Papers- 467 



More than one error pattern can 
result in the same syndrome; the 
decoder will choose the pattern with 
the least errors arrl compensate for 
that pattern. 

One more exanple of a 
convolutional encoder/decoder 
combination is illustrated in Figure 
11; the Wyner-Ash code is used 
here. 3, 5 '!he decoder uses the 
syndrome concept. The Vitert>i 
decoder described earlier is a 
better method of inproving coding 
gain. 

INTERI.EAVJNG AND a:>NCANTENATED 
CODES 

Figure 2 illustrates how these 
two techniques relate to block codes 
and convolutional codes. Figure 12 
depicts a hardware block diagram of 
a system employing these techniques. 

Interleaving is used to 
transfo:rm a bursty channel into an 
in:iependent error channel by 
scrambling the encoded symbols 
before transmission. An interleaver 
structure is built from 
semiconductor memo:cy in a 
rectangular array. Encoded data is 
written into the array by roNS and 
out by columns before transmission. 
After reception arrl decoding by the 
decoder, the process is reversed. 
This techniques has proven effective 
in satellite links that are subject 
to long bursts of errors. 

Concantenated codes are used to 
increase coding gain. A Reed
Solomon code is used with the 
ViteJ::bi decoder in Figure 12 due to 
the bursty nature of uncorrected 
errors out of the ViteJ::bi 
decoder.2,3 

a:>NCIUSIONS 

'!his paper is intended as an 
introduction to error control theo:cy 
for the CATV system engineer. In 
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order to dete:rmine the optinrum 
strategy to develop a practical 
digital delive:cy system for CATV, a 
number of factors should be 
considered: 

1. '!he worst-case allowable 
symbol-error-rate. '!his detennines 
the required coding gain. 

2. '!he envirornnent in which 
the system will operate, to include 
channel C/N, expected reflections, 
and other llnpainnents. 

3. 'lhe type of digital 
modulation selected _ ( eg, 16QAM, 
64QAM, etc) • '!he digital channel 
bandwidth, the allowable signal 
power relative to AM channels, and 
any effect on those AM channels 
must be considered. 

4. '!he required parity 
overtlead, which increases the 
symbol rate. 

5. '!he distribution of errors 
in the channel. A CATV channel is 
subject to random errors, not burst 
errors. 

6. '!he behavior of the 
required adaptive equalizer tmder 
various conditions. 

7. '!he circuit complexity and 
cost of the hardware, especially in 
the subscriber tenninal. 

Figure 13 illustrates the 
likely functional blocks in a CATV 
subscriber tenninal employing 
digital data delive:cy. '!he 
demodulator, adaptive equalizer, 
error decoder, am decatrpression 
hardware must be designed to 
operate in concert. A properly 
designed system promises to deliver 
consistent high quality video and 
audio to all subscribers. 
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