
MECHANICS OF AERIAL CATV PLANT 

Tim V. Dugan 

Times Fiber Communications, Inc. 
358 Hall Avenue, Wallingford, CT 06492 

ABSTRACT 

Understanding the mechanics of aerial cable 
installation is essential to the cable engineer 
for proper plant design and for maximum cable 
plant reliability and longevity. A key part of 
that understanding is the calculation of sags and 
tensions. Although basic sag and tension equations 
are available, little is available on calculating 
sag and tension with changing temperature and 
load. 

This paper extends the basic sag and tension 
equations to address these effects, and gives the 
ability to solve integrally supported (Figure 8) 
cable, tighly lashed cable, and unequal elevation 
problems. The equations are applied to several 
basic tension and clearance problems and further, 
to analyze expansion loop life, tight lashing, 
cable buckling, and center conductor pullouts. 
Obscure cable failure modes caused by wind 
gusting, solar heating and radiative cooling are 
discussed. 

INTRODUCTION 

The calculation of sag and tension can be 
quite useful to the cable television engineer. The 
calculations are used to select the appropriate 
size support strand for a given application or to 
determine if clearance requirements are met. They 
serve as an aid to the cable designers who 
determine the mechanical stress that the cable 
must be capable of withstanding or to evaluate 
such problems as expansion loop cracks and center 
conductor pullouts. The following is a discussion 
of sag and tension calculations which develops the 
simple case of a single wire suspended between two 
supports at equal elevation and works up through 
multiple elements, which takes into consideration 
each of the cable's components, with various loads 
and temperatures at unequal elevations. 

BASIC EQUATIONS: WIRE, EQUAL EVALUATIONS 

This first section covers the basic equations 
that apply. The sections that follow describe the 
application of these concepts. Figure 1 shows a 
single span of cable suspended between two fixed 
supports at equal elevations. 
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Linear weight of the wire (lb/ft) 
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Actual length of wire (ft) 
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These equations
1 

are a parabolic approximation 
of the actual form that a flexible wire assumes, 
which is a catenary. The equation for a catenary 
is: 

S = (H/W) [cosh (WL/2H)-1] 

:;::: WL 
2 

/8H 

( 3) 

The diffen>nce between the catenary and tho 
parabola is that the parabola is approximately ~% 
smaller if the sag is about 6/o of the span . 
Generally, the sag is less than 2% for most cable 
television applications. 

Another useful equation can be used to find 
the sag at any point along the span: 

s 
X 

UNEQUAL ELEVATIONS 

(4) 

The wire will assume the catenary form (or the 
parabolic approximation of this form) n>gardless 
of where the supports are located. The supports 
simply apply an equal and opposite vertical and 
horizontal force on the cable. Thus, the supports 
can be anywhere on the curve. Of course, after 
the load or temperature or both change, the sag 
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changes. The supports are still on a parabola, 
but the parabola is different. 
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T = Tension in the direction of the 
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cable (lb) 

With these equations
1 

(with Eqs. 6 and 7 
slightly modified from the referenced source) the 
initial sag or tension can be calculated. Of 
course, one or the other must be known and span 
length and cable weight must also be given. They 
can be used, for instance, to calculate clearance 
over roads and sidewalks, and to determine 
specific size strand to be used under worst case 
loading. Note, however, that there is no mention 
of the properties of the materials such as their 
thermal coefficient of linear expansion or their 
elastic modulus. Indeed, these equations are 
correct but o~ly for the initial conditions. 

TEMPERATURE AND LOAD CHANGES 

There are other conditions which encompass a 
range of temperatures and loads. For example, what 
if the amount of installed sag is fixed at some 
maximum value, and then the span is subjected to a 
different temperature and a load which may exceed 
the strand's strength? Or, if the sag and tension 
is known for the worst case load, what would the 
stringing sag and tension be at a different 
temperature and load? To solve these types of 
problems, further knowledge of the materials that 
are used is needed and the above equations must be 
adapted. 

Suppose the wire is installed at some initial 
temperature (T ) and the cable has a linear weight 
(W ) • Then tge temperature drops to some final 
tegperature (T ) and the linear weight of the 
cable changes lo some final weight (Wf) because, 
perhaps, ice has accumulated and a strong w:l'hd is 
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blowing. What happens to the sag and tension? 

As the temperature drops, the cable tries to 
get shorter because of its expansion coefficient, 
but because the span length is fixed the sag must 
get smaller, thus increasing the tension. The 
tension also affects the length of the cable due 
to its elastic modulus. So, as the tension 
increases, the length of the cable increases thus 
minimizing the effect. On one hand the cable 
tries to get shorter because of temperature, but 
it cannot get as short as it would like because 
the tension is increasing. Finally, the increased 
load causes the tension to increase, but because 
the cable is elastic it elongates in its elastic 
region thus increasing the sag and reducing the 
tension. All of this occurs simultaneously, and a 
balance or equilibrium is continually being 
maintained. 

To determine the final sag 
mathematical description of these 
given. 

and tension a 
events will be 

Unstressed Length 

The most important quantity in the process of 
determining the final sag and tension is the 
cable 1 s initial unstressed length at the initial 
temperature. The cable's unstressed length is the 
length of the cable if it had no tension or stress 
on it. It should not be confused with Lc' the 
actual cable length. 

The unstressed cable length is necessary to 
know because, as additional tension is applied to 
the cable, its stressed length changes as a 
function of its unstressed length (and also its 
elastic modulus). To determine the appropriate 
amount of expansion and contraction due to 
temperature changes, again the unstressed length 
must be used (along with its thermal coefficient 
of linear expansion). 

The stressed length of the cable (L ) can be 
determined from Eq. 2 or 10. From cthis the 
unstressed length can be determined. Assuming 
that the material is elastic and follows Hooke's 
Law, its strain is proportional to the stress 
applied by a factor called the elastic modulus. 

E Cf /e 

FL/A A L 

Where: 
E = Modulus of elasticity (psi) 
e = Strain = AL/L (dimensionless) 
~ = Stress = F/A (psi) 
AL = Change in length as the result 

stress (ft) 
F Force (lb) 
A Cross sectional area perpendicular 

to the force applied (sq in) 

L L+ AL 
c 

L+FL/AE 

(11) 

(12) 

( 13) 

(14) 



Lc = L(l+F/AE) (15) 

It is assumed that the tension is the same 
along the entire length, but, because the wire has 
a finite weight per unit length, the ends of the 
wire near the support have more tension. The 
horizontal component of the tension is the same 
everywhere in the wire. The vertical component of 
the tension is zero at the lowest point since 
there is zero cable weight. The vertical 
component of tension at the support is the weight 
of the cable between the support and the lowest 
point. 

The unstressed length, then is: 

It should be noted that this only applies for 
stresses within the elastic limit of the material. 
Also, the elastic modulus of the material is not 
necessarily constant with temperature; therefore, 
a knowledge of the characteristics of the 
materials is important. 

TEMPERATURE CHANGES 

Once the unstressed length has been determined 
at the initial temperature, the unstressed length 
can be determined at other temperatures from the 
following: 

Where: 
L 
Luf 

uo 
a 

It 

Final unstressed length at Tf 
Original unstressed length at 
Thermal coefficient of linear 
(in/in F) 
Final temperature (F) 
Original temperature (F) 

should be noted that 

( 1 7) 

(ft) 
T ( ft) 

0 . 
expans1on 

the thermal 
coefficient is not necessarily constant and again 
it is necessary to be familiar with the properties 
of the materials. 

Most materials have positive thermal 
coefficients of linear expansion which cause them 
to get longer when the temperature increases. When 
the temperature decreases, they get shorter. (In 
some cases, materials are specially selected 
because they have negative expansion coetticients 
so that when used in conjunction with other 
materials the overall change in length is 
minimized or matched to some other component such 
as in fiber optic transmission lines.) 

There are several factors that affect 
temperature. The temperature of the cable or wire 
is of course affected by the air temperature. The 
air temperature changes on a daily basis (diurnal) 
as well as yearly basis (annual). If electrical 
current is carried through the wire, a temperature 
rise will also occur, but, generally speaking, 
this rise is small for CATV cable. Another factor 
is radiation. During the day the cable is heated 
from the sun. At night the cable radiates its heat 

toward clear skies. The wind tends to minimize 
this affect. 

Measurements made in Connecticut on the 
longest day of the year when the sun's rays <lr(' 

most direct indicate that a temperatun' rise of 
about 45F above ambient can be exp('cted on black 
jacketed cable and about 24F rise above ambient 
for unjacketed aluminum sheathed coaxial cable. At 
night, in the same area, the temperature of black 
jacketed cable was about 8F below ambient and 4F 
below ambient for unjacketed aluminum cable. 

LOAD CALCULATIONS 

Before the final sag and tension can be 
calculated, it is necessary to evaluate the span 
of wire in terms of load. Initially we assumed 
that the wire's weight was the only load applied. 
Under worst case conditions, the wire may have ice 
formed around its circumference and at the same 
time a strong wind blowing on it. The total load 
on the wire is the resultant of all the vertical 
and horizontal loads. (The horizontal load here 
is perpendicular to both the vertical and the wire 
itself.) 

WEIGHT 

FIGURE 3 

The total resultant 
vector sum of all the 
components: 

load of the wire is the 
horizontal and vertical 

Where: 
Wf Final linear cable weight (lb/ft) 

£WV Sum of all vertical weights (lb/ft) 
~WH Sum of all horizontal forces (lb/ft) 

( 18) 

As an example, the vertical weight components 
may include: the weight of the support strand, the 
weight of all the cables, the weight of the 
lashing wire and possibly a cylinder of ice around 
the group. The horizontal force is only 
attributed to wind loading. In some cases a 
weight constant (e.g. in heavy loading districts, 
0.3 lb/ft) is added to the resultant final weight 
for safety. 

lee Loading 

The additional weight caused by icc> build-up 
on the cable is usually calculated based on a 
hollow cylinder having an inside diameter equal to 
the outside diameter of the bundle of the cables 
and the support strand and with a given thickness 
which is usually 0.25" or 0.5" depending on which 
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loading distr~ct is used. Using 57 lb/cu ft as the 
weight of ice , the linear ice weight around the 
cable can be calculated from: 

w. 
~ce 

Where: 
w. 
0 ~ce 

i 
t 

Linear ice weight (lb/ft) 
Diameter over cable bundle (in) 
Thickness of the ice (in) 

Wind Loading 

(19) 

The wind lojding on a circular surface can be 
calculated from : 

p 0.00256V
2 

Where: 
P Horizontal wind pressure (lb/sq ft) 
V = Wind velocity (mph) 

(20) 

In order to use this equation, the pressure 
must be converted to a load or force on the 
projected surface area of the bundle that faces 
the wind. Assuming that the wind is perpendicular 
to the cable and we wish the results to be in 
terms of lb/ft: 

Where: 

Fwind 

p 

D 
0 

Wind loading (lb/ft) 

Wind pressure (lb/sq ft) 
Diameter of cable bundle (in.) 
(including ice if appropriate) 

( 21) 

It should also be pointed out that horizontal 
loading results in sags which are not vertically 
directed. The horizontal and vertical components 
of the final sag can be resolved since they are 
proportional to the horizontal and vertical loads 
described in Eq. 18. i.e. 

(22) 

So, for example the actual vertical component 
of the sag would be: 

(23) 

FINAL SAG AND TENSION 

From Eq. 17 the final unstressed length of the 
wire can be determined based on the final 
temperature. From Eq. 15 we can determine the 
actual length of the wire if its tension is known: 

Where: 
L 
Lcf 
Huf 
Af 

E 

Final stressed length of the wire (ft) 
Final unstressed length of the wire (ft) 
Final horizontal tension (lb) 
Cross sectional area of the wire (sq in) 
Elastic modulus, tensile (psi) 
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(24) 

If the supports are at equal elevations, the 
final length of the wire is also (from Eq. 2): 

(25) 

Where: 
Sf = Final sag (ft) 

This is actually a special case of supports at 
unequal elevations. The following progression puts 
Eq. 10 into the same form as Eq. 25. Consider: 

(26) 

From Eqs. 5, 6, and 7, s
1 

and s
2 

can be set in 
terms of S as: 

s1 SL/ /L 
2 

(27) 

s2 SL22/L2 (28) 

So Eq. 26 can be transformed to: 

L L+(4S
2

/3L
4

)(L
1

3
+L

2
3

) (29) 
c 

From Eqs. 8 and 9, L
1 

and L
2 

can be stated in 
terms of S and h and L as: 

L(l-h/ 4S) 
L(l+h/4S) 

After a bit of work we find: 

3 3 3 2 2 
L

1 
+L

2 
= L (2+3h /8S ), 

which can be plugged into Eq. 29 to yield: 

2 2 
Lcf = L+(8Sf /3L) + (h /2L). 

(30) 
(31) 

(32) 

(33) 

Not ice when h=O, Eq. 33 reduces to Eq. 25, the 
equal elevation equation. 

Back to the problem at hand, we were in search 
of another equation to set equal to Eq. 24; our 
search is over with Eq. 33. Actually Eq. 24 would 
be better in terms of Sf, like Eq. 33. This is 
easily done via Eq. 1. 

(34) 

Setting Eq. 33 and 34 equal to each other 
yields: 

L+(8Sf
2

/3L) + (h
2
/2L)- L 

uf 
2 

- (LufWfL /8SfAE) = 0 

Which can be put into the form of: 

3 2 
Sf +Sf(3L/8)(L+h /2L-Luf) 

- (3L/8)(LufWfL
2

/8AE) = 0 

(35) 

(36) 

Notice that every variable in Eq. 36 is 
defined. except the final sag (Sf). This equation 
takes ~nto account a new temperature and a new 
load. Sf can be found via the solution of the 
cubic equation. Eq. 36 can be rewritten as: 



0 (37) 

Where: 

a 3[L
2

+(h
2

/2L) LLuf]/8 (38) 

b -3WfL
3

Luf/64AE (39) 

The solution of thas particular form of cubic 
equation is as follows : 

Then 

sf= {(-b/2) + [(a/3)3 + (-b/2)2]1/2}1/3 

+((-b/2) - [(a/3)3 + (-b/2)2]1/2 }1/3 

( L:O) 

( 41) 

Note, if the above condition is met and since 
-b/2 is always positive, the result will always be 
a real root. 

If (a/3)
3 

+ (-b/2)
2 

( 0 ( 42) 

Then 

Note, if Eq. 42 is true and since (-b/2) is 
always positive then (a/3) is certainly negative 
and again a real root will be obtained. 

Once the final sag is found the final tension 
is easily found from: 

(44) 

CLEARANCE CALCULATIONS 

Sometimes when checking to assure that the 
proper clearances are met (e.g. during make 
ready), it is necessary to know the elevation of 
the wire at points other than at the lowest point. 

For equal elevations Eq. 4 can be used. The sag 
at any point is given with respect to the lowest 
point which, for problems of equal elevation, is 
always exactly half-way between the supports. 

For problems of unequal elevation, it is not 
particularly helpful to know what the sag is with 
respect to the position of the lowest point sag 
because not only is the lowest point sag not 
exactly half-way between the two supports, it may 
not be between the two supports at all! 

Equation 4, however, can be adapted. 

1-- X Y-j 

FIGURE 4 

From the above figure' (which is simply Fig. 2 
without some of the details, but includes somP new 
information about the sag at any point) it can be 
seen that x can be stated in terms of y, which is 
the horizontal distance from the highest support 
as: 

(4'5) 

Where: 
x Distance from the lowest point (ft) 
y Distance from the highest point (ft) 

L
2 

Span length (ft) 
s

2 
Sag at lowest point (ft) 

Substituting Eq. 45 into Eq. 4 we obtain: 

( 46) 

Where: 
Sy Sag at y from the highest support (ft) 

Equation 46 can also be used for equal 
elevation problems. Notice from Eq. 9 that L is 
not fixed. L

2 
will be different from its orig~nal 

value dependtng upon the tension (H). Therefore, 
it is necessary to determine both the final L

2 
and 

s2 if clearance is to be calculated. 

It should be noted that materials, when 
exposed to stress even if below their elastic 
limit for a long period of time, tend to deform 
and take a permanent set. This slow acting 
deformation is called creep. For clearance 
calculations that require exacting accuracy. 
factors such as creep must be taken into 
consideration and creep data on the mater~al us"d 
to support the cable should be obtained. Although 
it is beyond the scope of this paper to provide 
such information, two data points arc given foe 
discussion. The creep rate on extra high strength 
galvanized steel wire and strand is about 0.08% at 
70% of the wire's rated breaking load. This much 
creep can occur in 24 hours, but very little 
additional creep takes place over the next IOOC 
hours of exposure, perhaps a total of 0.09%. 

To illustrate the implications of this "small" 
number, consider a 100 ft span with 1 ft of sag. 
Suppose during the course of time the strand is 
exposed to such stress that would caus0 0.09% 
creep. The implication can be calculated from Eq. 
2. The resulting sag would be 2.07 ft instc•ad of 
returning to 1 ft as might be expected. Although 
the strand should not be exposed to such stresses, 
the purpose of this illustration is to show thC' 
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limitations of the calculations and highlight the 
need for caution and good engineering judgement. 

SPECIAL CONFIGURATIONS 

Multiple Elements 

In some cases the wire may be comprised of 
several different materials with different cross 
sections. Cable with integral messengers ("Figure 
8") drop cable are some examples. Each material 
has its own expansion coefficient and elastic 
modulus. When suspended, each element takes a 
different portion of the total load. The amount 
of the load that any particular cable element 
takes is a function of its elastic modulus and 
area as compared to the total resultant modulus of 
all the materials and the total area of all the 
materials. 

The resultant modulus can be found 
multiplying the modulus of each material by 
ratio of the material's area to the total area: 

E 
r 

(A1/AT)E1 + (A2/AT)E2 

by 
the 

+ (A3/AT)E3+ .•. +(An/AT)En (47) 

Where: 
E Resultant elastic modulus (psi) 

r 
Total sectional area of the wire 

AT cross 
(sq in) 

A1 Cross sectional area of clement 1 (sq in) 

A2 Cross sectional area of element 2 (sq in) 

A3 Cross sectional area of element 3 (sq in) 

A Cross sectional area of element n (sq in) 
En Elastic modulus of element 1 (psi) 
El Elastic modulus of clement 2 (psi) 
E2 Elastic modulus of element 3 (psi) 
E3 Elastic modulus of element n (psi) 

n 

These values (i.e., Er .and AT) a.lo~g with the 
following value for expans1on coeff1c1ent can be 
directly substituted into the above equations for 
sag and tension wherever E, A, and a occur. 

The resultant coefficient of linear expansion 
(a ) is calculated as follows: 

r 

ar (A1E1a1 + A2E2a2 + 

.• + AnEnan)/(A
1

E1 + A2E2 + ... +AnEn) (48) 

By using these values for Er' Ar' and .ar the 
final sag and final tension can be determ1ned at 
the new temperature with the new load. 

Because the above equations which include 
elastic modulus only work when the materials are 
stressed within their elastic region, it is 
important to make sure that each element's elastic 
limit is not exceeded. 

The unstressed length of all the elements 
the same only at the original temperature. It is 
assumed that any stress built into the cable 
small compared to the installed stress. Once 
temperature changes, each element expands 
contracts at its own rate. Also, each element 

the 
and 
has 

is 

is 
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its own elastic modulus and cross sectional area. 
Unless the elements are bonded together in some 
fashion they may move independently of one 
another. 

In order to determine the stress on any 
particular element, the unstressed final length 
must first be determined. It can be calculated, 
based on the change in temperature and the 
expansion coefficient of the element in question, 
as follows: 

(49) 

Where: 

Lufn Final unstressed length of any particular 
element n (ft) 

L 
uon 

Original unstressed length of any 
particular element n (ft) 

Note: L is the same for all elements 
exactly theu~~me as that given in Eq. 16. 

and 

The final cable length (under stress) is the 
same for all elements. It can be determined from 
either Eq. 2 or Eq. 10. The strain that the cable 
element is under is then: 

the stress is the modulus times the strain: 

And the tension on element n is: 

Where: 
H 
An 

n 

E 
L n 

L cf 
ufn 

Tension on element n (lb) 
Cross sectional area of element n 
(sq in) 
Elastic modulus of element n (psi) 
Final cable length (ft) 
Unstress final length of element n (ft) 

(50) 

(51) 

(52) 

The stress in Eq. 51 should be tested to 
assure that the elastic limit not be exceeded. 
Aside from exceeding the elastic limit of any 
particular element, one additional caution should 
be noted. Generally, "Figure 8" cable used in CTV 
applications is for distribution purposes and so 
taps are installed. To install a tap the cable 
must be cut and separated from the messenger wire. 

Cutting the cable relieves the stress in the cable 
at the point where it is cut. This tension, 
however, does not necessarily disappear. A 
significant portion, if not all of it, is diverted 
to the steel messenger wire. So, wherever taps 
are installed in messenger cable, you must assure 
that the total tension does not exceed the safe 
limits of the messenger if it were alone. 

Cable Tightly Lashed 

In cases where 
so tight as to 
independently of 

cable is 
restrict 

the steel 

lashed to the strand 
cable from moving 
strand support, a 



similar analysis can be performed. This condition 
can occur even if the lashing is not restrictive: 
by having no expansion loops. 

We will call this third case "cable 
restrained." In this case, the steel strand is 
installed and loaded with the cable. The cable is 
then lashed so tight that cable movement is 
restricted. The resultant condition is that the 
steel strand is under stress and the cable has 
zero stress. 

After the temperature, load or both change, 
the load is not distributed like it was in the 
case of "Figure 8" cable. They differ in that 
there is no original cable tension; so the 
original unstressed cable length is the same as 
the actual cable length (Lc

0
). The original 

unstressed steel length is sltghtly shorter. 

It will be assumed that the cable and steel 
support strand are bound together, either by tight 
lashing or lack of expansion loops. This may not 
be the case because some slight differential 
movement between the cable and support strand can 
be expected, but it will allow us to evaluate the 
extreme conditions; the actual

5 
lying somewhere 

between this and the first case· (i.e., the steel 
taking the full load at all temperatures and under 
loading conditions). 

The first step in solving this problem is to 
find the unstressed length of the composite 
assembly. It is certainly not the unstressed 
strand length because the two components, the 
steel and the cable, are bound together. Nor is 
it the unstressed cable length. The unstressed 
length of the composite is somewhere between the 
two. 

When the composite assembly is unstressed, an 
interesting condition occurs; the steel is under 
tension and the cable under compression. 

Again, as before, the actual length of 
assembly initially is fo~nd from Eq. 2. 

The unstressed length can be calculated from: 

the 

(52) 

(53) 

E is found in the same way as for Figure 8 
cable~ Eq. 47. The tension, H, in Eq. 53 is the 
tension on the steel support alone. The original 
unstressed length can be used to find the final 
unstressed length at the final temperature from 
Eq. 17 except that the resultant expansion 
coefficient (a ) should be used in place of a. 
Finally, the ffnal sag can be calculated from Eq. 
41 or 43. The total tension on the assembly can 
then be found from Eq. 44. 

The original tens ion on the components was 
easily determined; the steel had all the tension, 
the cable had none. At final state, that is, 
after the load, temperature or both change, the 
tension on each component may not be quite so easy 

to determine. We will divide the tensions 
groups: namely the tc'nsion on the ste>el 
tension on the other components. 

into two 
and the 

To analyze the final 
must first determine 
length. It is: 

tension on the steel, '"" 
its initial unstressed 

Luo steel 
( 'i4) 

Changing the temperature altered this length to: 

( )')) 

The stress on the steel is then: 

(56) 

The tension on the steel is: 

Hf steel = A steel ()steel 
(57) 

The stress and tension on the other clements 
can be found in a similar manner except that the 
original unstressed cable length equals the 
original actual cable length. 

L 
co 

L 
cuo 

(58) 

The change in length of any particular element 
other than the steel can be determined from: 

Where the subscript "n" refers to one of the 
cable elements. 

The stress on that particular clement is then: 

(60) 

And the tension on that element is: 

H = A C! 
fn n n 

( 61) 

Unfortunately, it is difficult to first assume 
full load at the lowest temperature for restrained 
cable. For example, you may want the tens ion on 
the strand to be 60% of its breaking strength at 
full load at the lowest temperature. The tension 
on the other components can be anywhere betwec·n 
zero and the materia 1' s elastic limit, dept•ndi ng 
on what the original temperature was. 

In the other two cases, the original 
temperature and load have no restrictions. But in 
this case, cable restrained, the original 
conditions must be at the temperature at which the 
cable was lashed to the strand. Of course, if 
enough information is known about the final 
conditions, the initial conditions can be 
determined. 

In review, three basic configurations hdVC! 

been discussed with regard to sag and tension. The 
first was a simple case of a single wire. The 
second considered multiple elements which can be 
applied to "Figure 8" type cable or drop wire. Tlw 
last, "cable restrained", addressed what happc,ns 
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when the cable has zero tension initially but 
supports some of the load as conditions change. 
Each configuration was considered after the 
temperature, load or both changed. 

APPLICATIONS 

Strand Tension Under Worst Case Load 

To illustrate the application of these 
equations a few examples will be given. Consider, 
first, a 125 foot span having a 500 and 750 size 
jacketed cables supported by a 1/4" EHS strand. 
Assume that the cable has expansion loops and is 
free to move independently of the steel support 
strand so that there is no tension on the cable 
under any condition. The cable was installed at 
60F and has a 1.5% sag (1.875 ft). The cable is 
installed in a heavy loading district with extreme 
wind loading of 21 lb/sq ft. The question is, what 
is the tension on the strand under worst case 
conditions? 

From Table 1 and 3, the total weight of the 
strand, plus the 500J, plus the 750J, plus the 
double lashing is 0.439 lb/ft. The maximum tension 
on the strand must not exceed 60/o of its rated 
break strength under worse case expected loading. 
The initial strand tension and cable length at 60F 
can be calculated from Eq. 1 and 2. 

H (0.439 lb/ft) (125 ftl
2

/8(1.875 ft) 
457.3 lb 

L 125 ft + 8(1.875 ft)
2

/3(125 ft) 
c 

125.0750 ft 

The unstressed length of the steel 
strand is found from Eq. 16 and the 
modulus of the strand from Table 2 and 3. 

support 
elastic 

L 
IJ 

(125.0750)/[1+457.3/(0.035185) (28X10
6

)] 
125.01697ft 

Now the unstressed length at any other 
temperature can be determined. From Table 4, the 
temperature for a heavy loading district is OF. 
From Eq. 17 and the expansion coefficient of steel 
in Table 2, the unstressed length of the steel at 
OF is: 

(125.01697)[1+7.2x10-
6

(0-60)] 
124.96296 ft 

Assuming that the cables are stacked one on 

top of the other and from the dimensions in Table 
1 and 3, the width of the cable plus the strand is 
1.620 in. From Eq. 19, 0.5 in thick ice over the 
cable weighs 1.319 lb/ft. So the total vertical 
weight (i.e., ice plus the cable) is 1. 757 lb/ft. 
See Fig. 5. 
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LASHING 
0.045 

ICE 
0.50 IN.THICK 

500 J 
0.560 IN. OD 

FIGURE 5 

The horizontal load from the wind is 
calculated from Eq. 22. The projected diameter 
over the icc is 2.620 in (i.e. 2x0.5in + 1.620in). 
The wind pressure for a heavy loading district, 
from Table 4, is 4 lb/sq ft. The loading is then: 

Fwind (4) (2.620)/12 
0.873 lb/ft 

The vector sum of the horizontal and vertical 
loads calculated from Eq. 18 is: 

w [(1.757)
2 

+ (0.873)
2

] 112 

1.963 lb/ft 

The weight adder for a heavy loadin3 district 
is 0.30 lb/ft and results in a final weight of: 

1.963 + 0.30 
2.263 lb/ft 

To solve for the final sag in Eq. 37, a and b 
are first found from Eq. 38 and 39. The difference 
in support elevations, h, is zero so: 

a 3[(125)
2
-(125) (124.96296)]/8 

1. 73608875 

b =-3(2.263)(125)
3

(124.96296)/64(0.035185)(28x10
6

) 
= -26.27575 

(a/3)
3 

= 0.19380 

(-b/2)
2 

= 172.604 



Clearly, Eq. 40 is true and the final sag 
(which is not vertically directed) can be found 
from Eq. 41 and the final tension from Eq. 1. 

sf = 2. 779 f t 

H (2.263)125)
2

/8(2.779) 
1590 lb 

This is the tension (horizontally directed) in 
the strand under heavy loading conditions. This is 
well within the 3990 lb maximum limit. 

One more check is necessary and that is under 
extreme wind loading at 60F. From Figure A2 the 
wind loading is 21 lb/sq ft. The resulting wind 
load from Eq. 22 is: 

(21) (1.620)/12 
2.835 lb/ft 

By adding the horizontal and vertical 
components, the final load is 2.869 lb/ft. 
the unstressed length at 60F: 

(a/3)
3 

= -0.0186452 

(-b/2)
2 

= 277.746 

load 
Using 

The final sag and tension is found in the same way 
as before. 

3.30 ft 
1698 lb 

So the strand tension under extreme wind 
loading is well under the 3990 lb limit. 

The above example was carried out in several 
steps: 

1. 
2. 
3. 

4. 

5. 

Calculate 
Calculate 
Calculate 
from Eq. 
Calculate 
from Eq. 

the 
the 
the 

16. 
the 

1 7. 

initial tension from Eq. 1. 
initial cable length from Eq. 2. 
initial unstressed cable length 

final unstressed cable length 

Calculate the final load from the loading 
tables and Eqs. 18 and 19. 

6. Calculate the final sag from either Eq. 41 or 
43. 

7. Calculate the final tension from Eq. 44. 

For unequal elevations problems, L is 
calculated from Eq. 10 and h is used in Eqc. 38. 
These equations can be loaded into a computer or 
programmable calculator for easy calculations. 

Clearance Over A Traffic Light 

Consider, next, a situation where you wish to 
keep a 30" clearance, under all expected 
conditions, over a traffic light. If the steel 
support is installed so that it is loaded to about 
5"/o of its rated strength will the proper 
clearances be met? Figure 6 shows a sketch of the 

span. 

1------- 150 FT. 
r--50 FT.---i 

TRAFIC----
LIGHT 

I 

FIGURE 6 

T 
21FT. 

The following information is available. 
SUPPORT STRAND: 

1 I 4" 
E 
A 

a 

CABLE: 

EHS 
6 

28x10 psi 
0.0351~~ sq in 
7.2x10 in/in F 

1 - 750J 
1 - 500J 
Double Lashed 

Diameter 1.620 in 
Weight 0.439 lb/ft 

1 
30FT. 

l 

The cable is installed in a heavy loading 
district with 16 lb/sq ft extreme wind. 

The initial (loaded) conditions from Eq. 1, 2, 
16 and 46 are: 

H = 330 lb L 
u 

150.198554 ft 

S=3.74ft 
support. 

S = 3.33 ft at 50 ft from the 
y 

Assuming that the worst case is at 32F with 
0.5 in ice, no wind and a 0.3 lb/ft weight 
constant, the following results are obtained: 

wf 2.0576 lb 
Hf 1280 lb 

L 150.168274 ft 
suf 4.02 ft 

y 

sf = 1.52 ft 
Assuming Heavy 
\.]f 2.263 

Load Conditions: 

Hf 1431 
sf 4.45 

Assuming 120F with no load: 

Hf 0.439 lb/ft 
Hf 296 lb 
sf 4.17 ft 

For heavy loading 1431/lb is about 22% of the 
strands rated strength of 6650 lb. The expected 
creep is approximately 0.015%. Doubling it for 
margin, 0.03"/o, 

Lcf = 150.363381 ft 
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This is a first order approximation of the 
increased sag over time due to creep. The sag in 
the middle of the span would be about 4. 783 ft 
instead of 4.52 ft. As long as the attachments 
are: 21 + 2.5 + 5 ~ 28.5 ft high, there should 
not be any clearance problems. 

Tension on Composite Materials 

Consider a 150 ft span at 60F with 0. 5% sag 
(0. 75 ft). In this example let us assume that a 
single 750 non-jacketed cable is either tightly 
lashed to the strand or has no expansion loops so 
that in can not move independently of the 1/4" EHS 
support strand. 

L 
s 
w 

150 ft 
0.75 ft 
0.299 lb/ft 

!COMPONENT MAT A E a I 
I (sq in) (psi) (in/in F) I 

I 
I 6 -6 
!STRAND STEEL 0.03585 28x10

6 
7.2x10_

6 
!SHIELD AL 0.08075 10x10

3 
12.7x1~ 6 

IDIEL. T4+FOAM 0.33965 42x10 
6 

48x10 _
6 

!CENTER CuCladAl 0.02138 10.6x10 12.2x10 

I 
0.476965 4.26x1o

6 10.4x10-6 
!RESULTANT 

I 

The resultant is calculated from Eqs. 47 & 48. 
The condition at 60F are: 

s 0.75 ft H 1.121 

HTotal 
1.121 lb HSteel 0 lb 

Alum 

Assume the temperature drops to - 40F. 

sf 0.27 

HTotal 
3,129 lb 

I 
I TENSION Eq. # STRESS 

I 
IH 
I Steel 

1' 775 lb (Eq. 57) 50,448 psi 

IHShield 
980 lb (Eq. 61) 12,136 psi 

I HD. 1 111 lb 
I 1e 

(Eq. 61) 327 psi 

IHCenter 
264 lb (Eq. 61) 12 '348 psi 

I 
I 
I 
I 
I 
I 
I 
I 
I 

The stresses on the shield and center 
conductor have exceeded their elastic limits. This 
translates to excessive stress on the conductors. 
This span will be prone to center conductor 
pullout problems and stress fatigue. 

Now assume instead that the cable was 
installed on a cold day, say at 40F, and during 
the summer the cable temperature rose to 120F. The 
intitial sag and tension are the same as before; 
the final conditions are: 
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sf 2.14 ft H 1023 lb 

HTotal 
393 lb H Steel -435 lb 

nhield -82 lb 
HDiel -113 lb 

Cen 

Notice that the cable is under compressive 
forces. 

The force (F) required to cause the 
to buckle under compressive forces is: 

aluminum 

Where: 
I Moment of inertia 

X Unsupported distance 

The moment of ine4tia, I, for 750 cable is 
approximately 0.005 in so the maximum unsupported 
distance that the cable can be exposed to without 
buckling is about 34in. Although the lashing wire 
spacing is much less than 34 in, it is quite 
conceivable that, at the pole, the cable will be 
unsupported for over 34 in and cable buckling is 
imminent. 

Long Spans-Cable Movement and Expansion Loops 

Consider a long span, approximately 200 ft of 
750 cable, with 1.5'/o sag at 60F. Suppose that the 
cable has expansion loops and the cable can move 
freely as the temperature changes. Consider then 
that the temperature changes from 50F at night to 
110F during the day. What is the differential 
cable movement? This much temperature change is 
not unreasonable to assume since solar heating and 
radiative cooling can account for a 28F 
temperature change on unjacketed cable even if the 
ambient temperature does not change. 

60F 50F llOF 

L 200 
s 2 ft 1.89 ft 2.60 ft 
H 748 lb 791 lb 575 lb 

L 200.05333ft 200.04768ft 200.09026ft 
c 

200.02633ft 200.18832fr LCable~200.05333ft 
- 0.02135ft +0.09806ft 
- 0.256 in +1.177 in 

1.43 in TOTAL 

Expansion Loop Life 

The life of an expansion loop can vary 
significantly depending on a number of factors: 
the surface finish of the aluminum, the type of 
loop, the depth of the loop, the size of the 
cable, the wall thickness of the aluminum outer 
conductor, whether it's jacketed or not, and the 
excursion distance per cycle. Without going into 
expansion loops to any great extent, the following 
expansion loop lifes are typical of semiflexible 
cable with measured 6 in depth and total 1 in 
excursion (i.e., + 0.5in and -0.5 in from the 
neutral point). The expansion loops in 0.500 in 
cables were formed with a LEMCO G120 and the 1.000 
in with a G240. 



CYCLES TO OUTER CONDUCTOR 
FRACTURE (1" EXCURSION) 

TYPE 
0.500 in 
0.750 in 
1.000 in 

UNJACKETED 
29.9K 
18.0K 

8.0K 

JACKETED 
51.8K 
22.5K 
17. 9K 

The life of other cable sizes can be roughly 
approximated by interpolation. If each cycle is 
equivelent to one day, then the life of 0. 750 in 
unjacketed cable would be about 49 years. 
Measurements show that as you double the 
excursion distance, the life of the loop drops by 
a factor of 10 for jacketed cables and by a factor 
of about 20 for unjacketed cables. The depth of 
the loop is extremely important. For a 0.500 in 
unjacketed cable with a 3 1/2in depth instead of 
6in, the aluminum fractures at 1.5K cycles instead 
of 29.9K cycles. 

For the specific case given above where the 
loop is exposed to 1.4 in excursions, the life of 
the 750 cable loop is about 8 years. Therefore, 
even with modest temperature changes, a single 
expansion loop may not be adaquate for long spans. 

Wind Gusting 

Aside from length changes due to temperature 
changes, changes can also occur due to load 
changes. Although 1 oad changes due to ice build
up are infrequent, perhaps a few times a year, 
load changes due to wind can occur quite 
frequently especially if gusting is considered. 

The frequency and amplitude distribution of 
wind gusting is complicated and can vary 
significantly from one region to the next. In 
general, gusting is far more severe in urban areas 
with buildings than in flat, level country. 
Althougg there is some good data available on wind 
gusting , the next example simplifies the 
frequency and amplitude distribution of gusting to 
a single data set. 

Consider a 150 ft span of cable, one 500J and 
one 750J cable, suspended between supports with 
1.5% sag at 60 F in a town with buildings. 
Consider next that the distribution of wind gusts 
for a one year period can be represented by 1000 
gusts from 20 mph to 60 mph. The following table 
can be generated: 

Wind Wind Cable 
Speed Force Length 
(mph) {lb/sg ft) ~ 

0 0 150.0900 
20 1. 024 150.0927 
60 9.216 150.1827 

So, the change in length that the expansion 
loop must accommodate is 1.08 in. Assuming that 
there are 365 one inch temperature cycles per year 
and 1000 inch gust cycles per year, then the life 
of the loop will decrease by a factor of 0.27 as 
compared to its life due to temperature changes. 
For the 0. 750 in cable mentioned above, the life 
of the loop should be degraded from about 49 years 
to about 13 years. 

CONCLUSION 

The basic sag and tension equations have been 
expanded to account for changes in temperature and 
load. Special configurations, such as tight 
lashing and "Figure 8" type cable with composite 
materials, were also addressed. The application of 
these equations can help the cable engineer 
respond to the local utility about maximum tension 
and proper clearance of aerial plant. The 
equations can also be applied to help understand 
various failure modes such as center conductor 
pullouts and premature expansion loop cracking. 
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APPENDIX 

TABLE 1 
CABLE PROPERTIES 

Unjacketed Trunk and Feeder 

Type 
412 
500 
625 

750 
875 

1000 

Weight 
(lb/ft) 
0.058 
0.078 
0.121 

0.171 
0.225 
o. 325 

Dia. 
(in) 

0.412 
0. 500 
o. 625 

0.750 
0.875 
1.000 

E a 
(pL 6 (inh~g x10 ) x10 ) 
2.79 13.3 
2.44 13.5 
2.42 13.5 

2.37 13.5 
2.26 13.5 
2.62 13.4 

A 
r I 

I 
(sq in)l 
o.1333 I 
o.1964 1 
o.3o68 I 

I 
o.4418 1 
o.6o13 1 
o.7854 1 

________________________________ ! 

Jacketed Trunk and Feeder 

I E a Ar I 
I Weight Dia. (psi 6 (in/i~g I 
!Type (lb/ft) (in) x10) x10 )(sq in)l 
1 412J o.o74 o.47o 2.16 13.6 o.1735l 
1 5ooJ o.o98 o.56o 1.95 13.7 o.2463l 
1 625J o.146 o.685 2.02 13.7 o.3685l 
I I 
1 75oJ o.2o6 o.82o 1.99 13.7 o.5281l 
1 875J o.266 o.945 1.76 13.9 o.7776l 
I1000J 0.377 1.080 2.26 13.5 0.91611 
I I 
I TX565 0.106 0.625 1.77 14.0 0.30681 
I TX840 0.212 0.910 1.69 14.1 0.65041 
ITX1160 0.396 1.250 1.92 13.9 1.22821 
! _____________________________ ! 

Messengered Feeder (Figure 8) 

I E a A MSGR I 
I Weight Dia. (p§~ (i~{~nF r OD I 
!Type (lb/ft) (in) x10-)x10 )(sq in) (in)l 
I 412JMS 0.121 0.830 2.87 11.1 0.2207 0.1091 
I 500JMS 0.145 0.930 2.53 11.5 0.2936 0.1091 
I 625JMS 0.252 1.120 3.13 10.9 0.4272 0.1861 
I I 
ITX565JMS 0.183 1.020 3.24 10.5 0.3657 0.1861 
! ______________________________ ! 
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Drop Cable and Lashing Wire 

I E a A MSGR I 
I Weight Dia. (p§i 6 (inYi~g r OD I 
~~----~(~lb~/~f~t~)--~(l~·n~)~~x~10~)~x~1~0--~)(~s~q~i~n~)(~i~n~)_l 
159 Quad I 
!Single 0.027 0.262 1.17 10.8 0.0425 I 
IMsgr 0.039 0.417 2.03 8.89 0.0526 0.0511 
I I 
16 Quad I 
!Single 0.034 0.297 1.22 10.6 0.0556 I 
IMsgr 0.046 0.452 1.90 9.03 0.0658 0.0511 
I I 
1611 Quad I 
!Single 0.045 0.350 1.21 10.4 0.0798 I 
IMsgr 0.066 0.527 2.24 8.66 0.0941 0.0721 

I I 
ill Quad I 
!Single 0.071 0.434 1.06 10.2 0.1267 I 
IMsgr 1 0.100 0.657 1.91 8.59 0.1494 0.0831 
IMsgr 2 0.096 0.658 2.60 8.44 0.1532 0.1091 
I I 
!Lashing 0.007 0.045 0.1091 
I I 

Note: The messenger used on the 412 and 500 cable 
is a solid 0.109" EHS steel wire, a stranded 3/16" 
EHS steel wire is used on the 625 and TX565. 

E , a and A are the resultant elastic moduli, 
e~pan§ion co~fficients and areas respectively. 

TABLE 2 

'i~M~E~C~H~A~N~I~C~A~L-P~R~O~P~E~R~T~I~E~S~O~F~S~E~L~E~C~T~E~D-uMA~T~E~R~l~A~Lcs~i 

~----~----=-~----~~~~--~ !Material Elastic Expansion I 
I Modulus

6 
Coefficien~ 6 I 

I (psi x10 ) (in/inF x10 ) I 

I I 
!Steel 28-30 7.2 1

1 !Copper 16 9.2 
!Aluminum 10 12.7 I 
I Cu Clad Al I 
i(10%byVol) 10.6 12.2 1

1 ICuClad Steel 
1(23%Cond) 24-27 7.2 I 
!Tape/Braid 4.2-6.3 11-13 I 
I I 
I Foam Did I 
I (T4+) 0.042 78 I 
I Jacket Mat. I 
I LDPE 0.028 72 I 
I LLDPE 0.042 72 I 
I MDPE 0.063 83 I 
I HDPE 0.123 67 I 
I PVC 0.0011 40 I 
I I 



TABLE 3 
PROPERTIES OF 

SELECTED MESSENGER WIR1S 
AND EHS STEEL STRANDS 

I Break I 
I WT Area Strength/ 
/Type Stranding Dia.(lb/ft) (sq in) X 1000lb/ 

I I 
/0.051 solid 0.051 0.007 0.002043 0.200/ 
1 o.o72 solid 0.072 0.014 0.004072 0.365/ 
/0.083 solid 0.083 0.018 0.005411 o.485j 
1 o.1o9 solid 0.109 0.031 0.009331 1. 8oo I 
I I 
/1/8 7x0.041 0.123 0.032 0.009241 1. 83 I 
/3/16 7x0.062 0.186 0.073 0.021133 3.99 I 
17/32 7x0.072 0.216 0.098 0.028500 5.40 I 
I I 
/1/4 7x0.080 0.240 0.121 0.035185 6.65 I 
/9/32 7x0.093 0.279 0.164 0.047550 8.95 I 
/5/16 7x0.104 0. 312 0.205 0.059464 11.20 I 
I I 
/3/8 7x0 .120 0.360 0.273 0.079168 15.40 I 
/7/16 7x0.145 0.435 0.399 0.115590 20.80 I 
/1/2 7x0.165 0.495 0.516 0.149677 26.90 I 
I I 

TABLE 4 
3 I 

NESC LOADING TABLE I 
I 

Heavy Medium Light Extreme/ 
Wind I 

Radial Ice (in) 0.5 0.25 0.0 o.o I 
Wind (lb/sq ft) 4 4 9 See Fig A2/ 
Temperature( F) 0 +15 +30 +60 I 
Wt. Adder(lb/ft) 0.30 0.20 0.05 0.0 I 

I 

FIGURE A1 
NESC LOADING DISTRICT MAP 

Printed with permission. 

TABLE 5 
3 

NESC CLEARANCE REQUIREMENTS 
60 F, No wind 

/Roads, alleys and other land subject to 
/truck traffic or farm vehicles 18 

I 
/Residential driveways, no truck traffic 10 

I 
/Pedestrians only 8 

I 
/Railroad crossings 27 

I 
/Water areas sailboats prohibited 15 
/ (unless otherwise specified) 

I 
/If the spans are longer than: 
I 175 ft. in Heavy Loading Districts, 
I 250 ft. in Medium Loading Districts, or 
/ 350 ft. in Light Loading Districts; then 
/additional clearance should be added with one 
/exception. Add 0.10 ft. (0.15 ft. for railroad 
/crossings in heavy and medium loading districts) 
/to the clearance for every 10ft. of span for 
/spans longer than the ones listed above in all 
/loading districts. Additional clearance is not 
/necessary if the difference between the initial 
/sag (at 60°F with no wind) and final sag at 
/either 32°F with radial ice (from Table>4) and 
/no wind, or 120°F with no wind (and no ice) is 
/greater than the added clearance. 

'-------------------------------

FIGURE A2 
NESC EXTREME WIND LOADING MAP 

Printed with permission. 
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