EFFECTS OF CHANNEL LOADING ON COMPOSITE TRIPLE BEAT AND CROSS MODULATION

Michael G. Ellis Lee Thompson

Scientific-Atlanta, Inc.

Distortion in CATV amplifiers is due to the non-linearity of the hybrids and is influenced by channel loading and signal level. Composite triple beat and cross modulation, which are both forms of third order distortion, increase 2 dB for every 1 dB increase in signal level assuming that the hybrid is not in compression. An attempt will be made to develop an expression that accurately reflects the change in CTB and cross modulation with respect to channel loading.

The data used to generate the empirical equations for CTB and cross modulation is the result of several thousands of individual distortion measurements performed at Motorola on a total of 60 CATV hybrids using 6 different types of hybrids. The objectives of the test were to characterize the effects of distortion as a function of channel loading for sub-split, mid-split, and high-split systems.

The results of the tests show that CTB and cross modulation depend not only on the number of channels, but also on the frequency where the beat product falls. The change in CTB and the change in cross modulation due to increased channel loading cannot generally be determined by simply considering the number of new channels alone.

CASE #1 Changes in distortion caused by changes in channel loading at the high end of the band.

The equation, F (N1, N2), chosen to fit the data is an extension of the form $K*\log$ (N1/N2) that is presently used to describe changes in CTB and cross modulation as a function of new channel loading, N1, and old channel loading, N2. A correction term, G (N1, N2), is added to provide a second degree of freedom so that the least-squares error between the analytical equation and the empirical data can be further minimized. The equation $F(N1,N2)=K1*\log(N1/N2)+G(N1,N2)$ (1) must satisfy the following conditions:

- As N1 approaches N2, F (N1,N2) approaches 0
- 2. F(N1,N2) + F(N2,N3) = F(N1,N3)
- 3. F(N1, N2) = -F(N2, N1)
- 4. F (N1, N2) must continuously
- increase as the number of channels increases

CTB distortion is influenced not only by the number of beats falling on the channel under test but also by the frequency of the test channel. Α 234-450 MHz high-split system with 37 channels has worse distortion at 450 MHz than a 54-330 MHz sub-split system with 41 carriers does at 330 MHz. In a cable system, if the number of channels at the high end of the band were to be increased in a linear rate, the CTB would increase in a greater than linear One reason for this is that the rate. number of triple beats at any channel is proportional to the square of the number of channels; in particular, for a system with equally spaced channels, the number of triple beats at the highest channel is $[(N-1)/2]^2$. Conditions #4 above is satisfied by this relationship.

A simple equation that meets these four conditions is:

 $\Delta CTB = K1 \times \log(N1/N2) + K2 \times (N1^2 - N2^2) / 2000, (2)$

and

∆Cross modulation

 $=K3*\log(N1/N2)+K4*(N1^{2}-N2^{2})/2000$ (3)

Where \triangle CTB and \triangle Cross modulation are the changes in distortion in going from old channel loading, N2, to new channel loading, N1.

The data used to curve fit equations (2) and (3) is the result of thousands of distortion measurements

CHANNEL LOADINGS USED FOR HYBRID TESTS

SUB-SPLIT	MID-SPLIT	HIGH-SPLIT
61 channels	47 channels	37 channels
55.25-451.25MHz	175.25-451.25MHz	235.25-451.25MHz
52 channels	38 channels	28 channels
55.25-397.25MHz	175.25-397.25MHz	235.25-397.25MHz
41 channels	27 channels	17 channels
55.25-331.25MHz	175.25-331.25MHz	235-25-331.25MHz

taken on individual hybrid amplifiers. CTB and cross modulation were measured at the low end and the high end of the band for the 6MHz channel loadings listed in Table 1.

Distortion measurements were taken at 46dBmV hybrid output level with 0dB tilt. These measurements were repeated for 3dB and for 6dB of cable equivalent tilts for sub-split loading. Mid-split and high-split channel loadings were obtained by simply turning off the lower channels without readjusting the tilt as it was set up for the sub-split case. The test results showed that CTB is generally worse at the higher frequencies and cross modulation is worse at the lower frequencies. Also CTB and cross modulation did not get substantially better in going from 450MHz sub-split to 450MHz high-split they although loading, were progressively worse by comparison in going from 330MHz sub-split to 450MHz high-split channel loading.

The test data was used to solve for the coefficients K1,K2,K3, and K4 in equations (2) and (3) using a least squares solution to an overdetermined system of linear equations. These coefficients are listed in Table 2.

The mean-square error in these tables is given by

$$\sqrt{\sum_{i=1}^{N} \frac{r_i^2}{N}}$$

where r₁ is the residue of the ith linear Simultaneous equation used to solve for the coefficients Kl, K2, K3, and K4.

The data taken at OdB tilt, 3dB tilt, and 6dB tilt can be combined to

provide a single approximating equation for these three cases without increasing the mean-square error. These coefficients are listed in Table 3.

Further reduction is possible because the coefficients Kl, K2, K3, and K4 can be closely described by an exponential function. The resulting equations are:

(NI - NZ)/2000 (4

∆Cross Modulation

 $=43.526 \times e^{0.001965 FL} \times \log(N1/N2)$

 $\begin{array}{rrr} 0.004189 \text{FL} \\ -2.055 \text{*e} & \text{*(N1}^2 & -\text{N2}^2)/2000 & (5) \end{array}$

Equations (4) and (5) can be used to predict the change in CTB and the change in cross modulation as channels are added (or subtracted from) the high end of the band with the low end fixed at some predetermined frequency, FL, between 54MHz and 234MHz. The computed change in distortion as a function of channel loading is listed in Table 4.

CASE #2 Changes in distortion caused by changes in channel loading at the low end of the band.

If channel loading is changed by adding (or removing) channels from the low end of the spectrum, with the high end constant, then a new set of equations must be developed to describe the change in CTB and the change in cross modulation. Applying least squares solution to an overdetermined set of linear simultaneous equations yields the coefficients listed in Table 5.

ДС т в									
SUB-SPLIT	KI KI	K2	MEAN-SQUARE ERROR						
OdB tilt	36.7895	3.16712	0.5309						
3dB tilt	17.9795	6.8319	0.4994						
6dB tilt	12.6939	7.67	0.6253						
M1D-SPLIT									
0dB tilt	27.6869	6.1294	0.5625						
3dB tilt	23.6957	7.0402	0.6484						
6dB tilt	14.7859	9.7131	0.8102						
HIGH-SPL1	т								
0dB tilt	25.9	8.6362	.7773						
3dB tilt	22.396	10.222	.9463						
6dB tilt	19.474	11.6365	.8086						

```
△CROSS MODULATION
```

SUB-	-SPLIT	К3	K4 i	MEAN-SQUARE ERROR
0dB	tilt	34.2969	-1.9995	0.6495
3d B	tilt	37.8658	-2.3286	0.6046
6dB	tilt	43.3751	-3.4727	0.5979
0dB	tilt	31.8567	-3.7134	0.7525
3d B	tilt	32.0924	-3.7179	0.7327
6dB	tilt	33.4841	-4.9949	0.7396
0dB	tilt	28.8249	-6.1806	0.8077
3d B	tilt	26.6492	-5.6224	0.7234
6d B	tilt	24.325	-4.9346	0.8726

coefficients are listed for The tilts of OdB, 3dB, and 6dB. It is not possible to continue toward a single equation that applies for any value of tilt (as was done in case #1) without seriously degrading the mean-squarethe In order to apply error. information in Table 5 to a system with, for example, 4dB of tilt it is necessary to compute ΔCTB and $\Delta cross modulation$ assuming 3dB of tilt and 6dB of tilt and interpolate. As stated earlier, tilt is cable equivalent tilt referenced from 54MHz to the high channel (331.25MHz, 397.25MHz or 451.25 MHz) for sub-split, mid-spit and high-split systems.

CASE #3 Changes in distortion caused by a change in channel loading at the low end and at the high end, simultaneously.

Calculating changes in distortion caused by changes in channel loading at the low end and at the high end of the band is simply an application of case #1 and case #2. A small difference in the computed result will occur depending on whether the change in distortion is computed by first considering the change in channel loading at the high-end (case #1) and then be adjusting for changes in channel loading at the low-end (case #2), or vice-versa. The change in distortion should be computed both ways and the result averaged.

CASE #4 Distortion in a system spaced other than 6MHz.

Distortion in a non-6MHz system can be calculated relative to a comparable 6MHz spaced system by

 $10*\log(N1/N2)$ (6)

where Nl is the number of triple beats at frequency, F, in a 6MHz system and N2 is the number of triple beats at the same frequency, F, in a system spaced other than 6MHz. The use of the same equipment for both systems and the same high and low-end frequencies is implied. The number of triple beats and the computer program to calculate the number

∆Cтв

Kl	K2	ME.	AN-SQUARE ERROI	R
22.4876	5.8897	Sub-Split	0.5882	
22.056	7.6275	Mid-Split	0.7096	
22.59	10.165	High-Split	0.8702	

Cross Modulation

K3	K4	MEAN	-SQUARE	ERROR
38.51 32.477 26.5999	-2.6003 -4.142 -5.579	Sub-Split Mid-Split High-Split	0.6238 0.7544 0.8298	

\triangle TABLE 4

Sub-Split (54MHz to 330/400/450MHz)

Bandwidth Change

∆ CTB	=	4.33dB	330MHz	to	400MHz
A CTB	=	4.55dB	400MHz	to	450MHz
4 XMOD	=	2.64dB	330MHz	to	400MHz
4 XMOD	=	1.35dB	400MHz	to	450MHz

Mid-Split (174MHz to 330/400/450MHz)

Bandwidth Change

Д СТВ	=	6.00dB	3 3 0 M H z	to	400MHz
∆ CTB	=	4.95dB	400MHz	to	450MHz
A XMOD	æ	3.34dB	330MHz	to	400MHz
∆ XMOD	æ	1.41dB	400MHz	to	450MHz

High-Split (234MHZ to 330/400/450MHz)

Bandwidth Change

🛆 СТВ	=	7.41dB	330MHZ	to	400MHz
A CTB	=	5.71dB	400MHz	to	450MHz
A XMOD	=	4.38dB	330MHz	to	400MHz
∆ XMOD	=	1.58dB	400MHz	to	450MHz

of triple beats occurring at any frequency for a 6MHz spaced system is given in Table 6. The computer program calculates, for each channel, all possible triple beats, FB, produced by Fl, F2 and F3 such that

 $\begin{array}{rcl} FB &=& F1 \;+\; F2 \;-\; F3 \\ FB &=& F1 \;-\; F2 \;+\; F3 \\ FB &=& -F1 \;+\; F2 \;+\; F3 \\ FB &=& 2F1 \;-\; F2, \text{ and} \\ FB &=& F2 \;-\; 2F1. \end{array}$

The situation where the triple beat falls on the same frequency as a carrier producing that triple beat, is not allowed.

∆ ств

Upper Freque	ency 450MHz	Kl	K2 M	ean-Square Error
0d B	tilt	21.2408	-0.8260	0.1732
3d B	tilt	21.6743	-1.7904	0.08844
6dB	tilt	12.4627	-0.94018	0.10
	400MHz			
0d B	tilt	21.1186	-0.8089	0.4007
3d B	tilt	19.498	-1.6228	0.2436
6d B	tilt	17.6072	-2.3779	0.21505
	330MHz			
0d B	tilt	21.7981	-1.2693	0.3385
3d B	tilt	19.6684	-2.7336	0.3498
6dB	tilt	20.2212	-4.9050	0.3029

Δ Cross Modulation

Upper Frequency	450MHz	К3	K4 M	lean-Square	Error
0dB til	t	27.3634	-0.1026	0.38814	
3dB til	t	29.2604	-1.0479	0.3388	
6dB til	.t	20.69899	-0.21577	0.52345	
	400MHz				
0dB til	t	22.686	-0.3277	0.5559	
3dB til	t	23.0488	-1.332	0.5736	
6dB til	.t	21.74025	-1.816	0.59137	
	330MHz				
0dB til	t	21.1496	-0.1468	0.4165	
3dB til	t	18.5581	-0.7348	0.3918	
6dB til	.t	17.828	-1.9623	0.4138	

6MHz SPACING

8MHz SPACING

					NUMBER	OF TRIPLE BE	ATS PER C	HANNEL						NUMBER OF
	FREQ	1	2	3	4	5	6	7	8	9	10	11	FREQ	TRIPLE BEATS
	55.25		640		615		435			240			153.25	342
	61.25		664	608	639		455			254			161.25	359
	67.25		687	632	661		473			267			619.25	375
	77.25		57	56	0C		48 48			3/			185.25	390
	121.25		57 895	849	96 865		40 641			385			193.25	404
	127.25		921	875	890		662			401			201.25	429
	133.25		944	898	913		681			414			209.25	440
	139.25		96 5	920	933		697			425			217.25	450
	145.25		98 5	941	953		713			435			225.25	459
	151.25		1004	961	971		727			444			233.25	467
	157.25		1022	980	989		741			452			241.25	474
	163.25		1039	1015	1005		753			459			249.25	480
	175 25	529	1033	1013	1021		705	342		403	169		265,25	489
	181.25	550	1086	1048	1051		787	359		476	180		273.25	492
	187.25	571	1101	1063	1065		797	375		481	191		281.25	494
	193.25	590	1114	1077	1078		806	390		484	200		289.25	495
	199.25	609	1127	1090	1090		814	404		489	209		297.25	495
	205.25	626	1138	1102	1101		821	417		491	216		305.25	495
	211.25	643	1149	1113	1111		827	429		492	224		313.25	495
	217.25	658	1158	1123	1120		832	440		491	228		321.25	494
	223.25	673	1167	1132	1128		836	450		490	233		329.25	492
	229.25	686	11/4	1140	1135		840	459	192	468 487	236	64	345 25	489
	235.25	710	1181	114/	1141	324	845	474	194	484	240	70	353.25	480
	241.25	721	1100	1155	1140	356	845	480	205	481	241	76	361.25	474
	253 25	730	1194	1162	1154	370	844	485	215	476	240	80	369.25	467
	259,25	739	1199	1166	1158	384	842	489	224	471	241	84	377.25	459
	265.25	746	1201	1169	1159	396	841	492	2 32	464	240	86	385.25	450
	271.25	753	1202	1170	1159	408	839	494	239	457	239	88	393.25	440
	277.25	758	1201	1170	1158	418	836	495	245	449	236	88	401.25	429
	283.25	763	1200	1169	1156	428	832	495	250	442	233	88	409.25	417
	289.25	766	1198	1168	1155	436	827	495	254	434	228	88	417.25	404
	295.25	769	1197	1167	1153	444	821	495	257	426	223	96	425.25	375
	301.25	770	1194	1165	1150	450	814	494	259	416	210	84	433.25	359
	307.25	771	1191	1162	1146	456	806 707	492	260	400 30 <i>4</i>	200	80	441.25	342
	313.25	770	1181	1153	1135	400	797	485	260	382	191	76	445.25	
	325 25	770	1174	1147	1128	455	776	480	260	367	180	70		
	331.25	769	1167	1140	1120	468	764	474	259	350	169	64		
	337, 25	766	1158	1132	1111	468	751	467	257					
	343,25	763	1149	1123	1101	468	738	459	254					
	349,25	758	1138	1113	1090	468	725	450	250					
	355.25	753	1127	1102	1078	468	712	440	245				ł	
	361,25	746	1114	1090	1065	466	698	429	239					
	367.25	739	1101	1077	1051	464	683	41/	232					
	373.25	730	1086	1063	1036	460	66/	404	224					
	379.23	721	10/1	1040	1020	400	632	375	205					
	391.25	699	1034	1032	1003	444	612	359	194				I	
	397. 25	686	1019	997	969	436	589	342	182					
	403.25	673	1002	979	952	428								
	409.25	658	984	961	934	418								
	415.25	643	96 6	942	9 15	408								
	421.25	626	946	922	895	396								
	427.25	609	926	901	874	384		2		Numbe	r of	trip	le bea	ats on any
	433.25	590	904	8/9	852	370				chann	el fo	r a	60 c	hannel,6MHz
	439.23	5/1	957	832	801	340				space	d sub-	split	syste	m.
	451.25	529	830	805	004	324				-		-	-	
								3		Numbe chann space	r of el fo d sub-	trip: r a 5 split	le bea 59 cha system	its on any nnel, 6MHz m.
COLUMN	DESCRI	PTIO	<u>N_</u>					4		Numbe chann spaced	r of el fo d sub-	trip] r a 5 split	Le bea 59 cha: system	nts on any nnel, 6MHz m.
1	Number channe spaced	r of l fo mid	trip or a -split	le be 47 syst	eats d channe em.	on ang 1 ,6M H	Ý Z	5		Numbe channe spacee	r of el fo d high	trip] r a -split	le bea 37 cl t syste	ts on any nannel,6MHz em.

- 6 Number of triple beats on any channel for a 52 channel, 6MHz spaced sub-split system.
- 7 Number of triple beats on any channel for a 38 channel, 6MHz spaced mid-split system.
- 8 Number of triple beats on any channel for a 28 channel, 6MHz spaced high-split system.
- 9 Number of triple beats on any channel for a 41 channel, 6MHz spaced sub-split system.
- 10 Number of triple beats on any channel for a 27 channel, 6MHz spaced mid-split system.
- 11 Number of triple beats on any channel for a 17 channel, 6MHz spaced high-split system.
- 12 Number of triple beats on any channel for a 38 channel, 8MHz spaced system.

NOTE: For an HRC system, the triple beat caused by Fl+F2+F3 must also be included in the program. This can be done at line 205 with 205 count(INT(A(I) +A(J)+A(J)+A(K))=count(INT(A(I)+A(J)+A(K)))+1.

10 DIM A(78),COUNT(1100) 20A(1) = 55.2530A(2)=61.25 40A(3) = 67.2550A(4)=77.25 60A(5) = 83.2570FORI=1T073 80A(I+5) = 121.25 + (I-1) * 690NEXT 100 INPUT "LOW FREQ CHANNEL NUMBER", LF 110 INPUT "HIGH FREQ CHANNEL NUMBER", HF 120 FOR I=LF TO HF-2 130 FOR J=I + 1 TO HF-1 1 FOR K=J+1 TO HF 1A=ABS (A(I)+A(J)-A(K)) THEN COUNT (INT(A)) =160 IF A=A(K) COUNT(INT9A))+1 170 A=ABS(A(I)-A(J)+A(K)) IF A=A(J) THEN COUNT (INT(A)) = 180 COUNT(INT(A))+1 190 A = ABS(-A(I) + A(J) + A(K))IF A=A(I) THEN COUNT (INT(A))= 200 COUNT (INT(A))+1 210 NEXT 220 NEXT 230 NEXT 240 FOR I=LF to HF-1 250 FOR J=I + 1 TO HF 260 A=ABS (2*A(I)-A(J)) 270 COUNT (INT(A)) = COUNT (INT(A)) + 1280 A=ABS (2*A(J)-A(I)) 290 COUNT (INT(A)) = COUNT (INT(A)) + 1

- 300 NEXT 310 NEXT 320 FOR I=LF TO HF 330 LPRINT A(I), COUNT (INT(A(I)) 340 NEXT
- 350 STOP
- 360 END

For a system operated at OdB tilt, it is easy to relate the triple beat at a particular frequency to the composite triple beat (CTB) at that frequency. To show this, six hybrids were measured at OdB tilt and 46dBmV output level for an average CTB of -59.4dB at 445.25MHz with 54MHz - 450MHz sub-split loading. The measured triple beat was average -89.75dB at 445.25MHz (adjusted for level). With 801 triple beats present at 445.25MHz, the expected CTB, based on a triple beat measurement of -89.75dB, is -60.72, compared with an actual measured CTB of -59.4dB (see Table 7).

The purpose of this test was two-fold. It shows that the magnitude of the triple beat at any particular channel is independent of the choice of frequencies, Fl, F2, and F3 that produce that beat, and that the composite triple beat can be accurately related to a single triple beat measurement by equation (6). However, the magnitude of the triple beat is dependent on the frequency on which the triple beat falls, with the higher frequencies giving worst results.

NOTE: Each triple beat measurement is an average of seven individual triple beat measurements involving different combinations of frequencies, F1, F2, and F3 such that F1 + F2 - F3 = 445.25MHz. The choice of channels for F1, F2, and F3 made no difference in the magnitude of the triple beat at 445.25MHz.

The of equation accuracy (6) for predicting ΔCTB at the highest channel as a function of the change in the number of triple beats can also be compared against the data in Table 5 using a OdB tilted system and the data in Table 7. Here Table 5 is used to predict the change in CTB at the highest channel in the band as channels are removed from the low end of the band. The data in Table 7 used with equation (6) represents a theoretical approach and gives "close" results.

As a final illustration, the CTB of a 150MHz to 450MHz system with 8MHz channel spacing and a 3dB hybrid output tilt can be determined by application of the data in Table 5 and equation (6). A starting point is required and might, for example, be the CTB of a 54MHz to 450MHz, 6MHz spaced system operating at

CTB Hybrid	and Triple Beat CTB at 445.2	Measurements on Individual SMHz Triple Beat at 445	Hybrid .25MHz
1	-60.5	-91.9	
2	-59.9	-88.5	
3	-60.8	-92.1	
4	-59.4	-90.4	
5	-59.3	-89.4	
6	-56.6	-86.2	
AVERAGE	-59.4	-89.75	
NOTE:	Each triple bea	t measurement is an average o	of seven

individual triple beat measurement is an average of seven different combinations of frequencies, F1, F2, and F3 such that F1 + F2 - F3 = 445.25MHz. The choice of channels for F1, F2, and F3 made no difference in the magnitude of the triple beat at 445.25MHz.

TABLE 8

△CTB predicted Test Channel	ed b y Ta ble l Cha nge in loading &CTB					∆CTB predicted			y 10*log(Nl/			
445.25MHz	SS	to	HS	3.64dB	4.	ldB,	Nl	=	830,	N 2	=	324
397.25MHz	SS	to	HS	4.90dB	5.	ldB,	N1	=	589,	N 2	=	182
331.25MHz	SS	to	HS	7.45dB	7.	4dB,	N1	=	350,	N2	=	64

a 3dB hybrid output tilt with a known CTB distortion. A 1 CTB of 1.19dB is calculated from Table 5 based on N1 = 52 and N2 = 61 for a 150MHz to 450MHz bandwidth, 6MHz spacing, and a 2 CTB of 2.62 dB is calcusing $10*\log(N1/N2)$ where N1 = 625 for a 6MHz spaced system and N2 = 342 for an 8MHz spaced system. The total CTB is therefore 3.81dB better than the performance of the same equipment operating with a 6MHz channel spacing from 54MHz to 450MHz.

SUMMARY

The results presented here are optimal in the least-squares sense for CATV cable systems employing sub-split mid-split (174MHz), or (54MHz), high-split (234MHz) bandwidths with a high end frequency between 330MHz and 450MHz. The accuracy of the approximating equations, if used outside this range, should deteriorate significantly. More data is required on a wider variety of hybrids in the 54MHz to 550MHz region in order to develop a method of predicting changes in distortion versus changes in channel loading and channel spacing throughout the entire CATV band. The author would like to thank the Motorola RF & Optoelectronic Products Division in Phoenix, Arizona, for the use of their automatic test facility that made this article possible.