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1. Introduction 
Network traffic modelling and forecasting play a crucial role in maintaining network performance, 
optimizing resource allocation, and providing seamless user experience. Perhaps the most widely used 
method for network traffic forecasting is Compound Annual Growth Rate (CAGR). While CAGR can 
provide a view of network traffic growth, it does not provide the required context for informed decision 
making that can differentiate services from the competition. Adhoc analysis of network traffic models or 
conventional approaches may not capture the complex network behavior that is observed today. Machine 
learning (ML) network traffic models can be a powerful aid to align network behavior with organizational 
goals.  

CAGR has limitations such as period choice sensitivity, network traffic volatility and seasonality. 
Incorrect traffic predictions increase the chance of suboptimal investments in capacity, reliability, and/or 
security. Network burst patterns based on high-profile events such as smartphone updates, major video 
game releases, or live global sporting events (e.g., the 2022 FIFA World Cup) may be overlooked. CAGR 
accuracy can be improved by calculating each network segment. In addition, ML network models can 
provide the additional context required to make informed decisions. 

This paper proposes using ML to enable automated iterative calculations and model attributes such as 
trends and seasonality, failure events, subsequent interactions between the primary and failover links, and 
network burst patterns. This provides the additional context that is missing from CAGR alone to make the 
most informed business decisions. 

This study considers a portion of a real Internet backbone. It analyzes traffic patterns within four 
consecutive years, using insights and findings to predict monthly network traffic in the fifth year. Section 
2 describes the network under consideration and the data collection process. It discusses challenges 
incurred in this exercise and highlights influences that deteriorate data quality and the performance of any 
prediction. The section ends with a traffic modeling exercise and the presentation of accuracy metrics for 
future model evaluation. Section 3 revisits the traditional CAGR-based approach to network traffic 
forecasting. It exposes the limitations of the global CAGR strategy and discusses possible improvements 
for that method. Section 4 explores ML alternatives to network traffic forecasting. It shows how ML 
models can help to uncover seasonal traffic patterns and provide better forecasting. It emphasizes the 
importance of choosing the forecasting model appropriate to the data's nature, the presence or absence of 
seasonality, the prediction horizon, and the complexity of patterns in the traffic. This section also shows 
models in action and compares the performance of a few ML time series forecasting models when 
predicting traffic for the reference Internet long-haul. Section 5 summarizes critical intakes for effective 
and reliable forecasting and indicates future investigations. The paper ends with a list of abbreviations and 
references. 

2. Case Studies 

2.1. The Network Graph 

The new insights and approaches developed in this paper are tested on a large service provider network 
with millions of users and a mix of almost all types of internet traffic. The network has hundreds of links 
with varied capacities, from multiple 10Gs for smaller hubsites to tens of 100Gs for backbone links. Link 
costs are also varied as some are on the service provider's own fiber infrastructure while others are leases 
from other providers. Figure 1 presents a logical view of the reference network, with three highlights for 
future illustrations throughout the paper. Highlighted links all originate in the same city. One represents 
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an internal metro link between two hubsites of the same city. Another link pictures the connection of two 
cities through the national long haul. The third highlight is typical of international links. 

 

 

Figure 1 – The Network Topology 

Regarding network connectivity, Figure 2 shows the connectivity distribution at a hubsite for the 
reference network. The connectivity or the degree at a hubsite is the number of links originating or 
terminating at the given hubsite. For example, the international hubsite degree is 7 while the national 
hubsite has connectivity 9 for the international link referenced in Figure 1. The histogram in Figure 2 
indicates connectivity of 4, 5, or 8 for most hubsites. The graph under study is highly connected, with an 
average hubsite connectivity of 5.38.  
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Figure 2 – Distribution of Connectivity at a Hubsite 

2.2. Data Collection Over Time 

Links are, in fact, bundle-intraconnects between hubsites. Data are measurements of upstream and 
downstream traffic in bits per second. Using the set of intraconnects from the above-described network, 
the heatmap in Figure 3 shows data availability as of June 30th, 2023. A dark shade indicates data records 
on the given date, while a lighter shade is for unavailable data. 

Many links in Figure 3 show no data record for multiple reasons. Some hubsite devices are probably 
missing from the database due to human errors, and high volumes of historical data may have been 
purged to free up disk space. One data source from this study is an old legacy Network Management 
System (NMS) with limited storage. The NMS in question also requires manual device entry before being 
managed. The industry transition from NMS to powerful SDN controllers and orchestrators is recent. 
Another reason for missing data relates to network normal operations and changes. Network activities 
include the commissioning, decommissioning, and migration of routers. Changes also involve the turn 
up/down of new links and capacity augmentation on existing links with different identifiers, etc. Besides 
network device changes, technology evolves; some bundle intraconnects may have existed in another 
form (e.g., 1GE to 10GE to 100GE to bundle-ethernet of 100GE).  
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Figure 3 – Availability of Historical Data 

Figure 4 and Figure 5 well illustrate legacy network tracking system inconsistency. It is highly 
improbable that the Internet backbone under examination had less than 30 nodes and interfaces before 
mid-2017. It is more realistic that either network elements were missing from the tracking system or 
experienced name changes over time. Considering this assumption, a reconciliation exercise might 
significantly improve the dataset quality. Reconciling data is arduous and time-consuming. It also 
requires some logic and automation to maintain the resulting dataset and future data collection clean for 
analysis.  

Data acquisition is beyond this paper's scope. The study focuses on a subset of links with traffic traces for 
the previous five years as of June 30th, 2023. Those are about half of the links shown in Figure 3, 
including international, longhaul, and metro reference links in Figure 1, with seven years of historical 
data. 
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Figure 4 – Number of Hubsites and Intraconnects (based on data collection) 

 

 
Figure 5 – Evolution of Network Connectivity (based on data collection) 

 

2.3. Traffic Overview and Modelling 

As previously stated, our study considers a subset of intraconnects with data from July 1st, 2018, to June 
30th, 2023. Upstream and downstream traffic measurements are collected from each hubsite of the link. 
Links are bidirectional; the dataset is further simplified by approximating the link to the one intraconnect 
showing the highest data rate between the four traffic measurements for upstream and downstream. That 
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maximum data rate pictures the worst-case scenario and thus is considered traffic usage over the 
simplified link. 

On the other hand, the lowest granularity for traffic, common to all our data sources for this study, is daily 
aggregations. An ideal granularity is 5-minute samples, which is unrealistic to expect in 10+ years of 
storage-limited archives before adopting cloud computing. Regarding aggregation functions, one 
generation collector provided daily maximum, average, and several percentiles, while the other tool only 
provided maximum and average. Picking up daily maximums allowed consistency along the concatenated 
data set.  

The daily maximums are further aggregated in monthly measurements since it is common to forecast 
network traffic for the medium to long term—a quarter, a year, and up to five years. In making monthly 
aggregates, it is ideal to consider the maximum daily 95th percentile (P95) or even take the compound 
P95 over all 5-minutes samples within given month. Depending on the application, this allows to control 
high profile and failure events causing traffic increases on (failover) links. Given the nature of the prior-
described dataset for this study, reversing and taking the 95th percentile represents a decent monthly 
aggregate. Figure 6 shows the traffic trends for longhaul, international, and metro reference links. Note 
the traffic jump in mid-2020, maintained for an entire year on the three links, due to work-from-home 
during the COVID-19 pandemic. 

 
Figure 6 – Historical Traffic Evaluation for Several Links 

2.4. The Study 

2.4.1. Main Objective 

Five years or 60 months of historical traffic measurements are available for the 30 selected links. The first 
four years or 48 months are used to train the models studying past traffic behavior and patterns. Insights 
gained from the observations support traffic predictions for the remaining 12 months. In other words, 
traffic measurements from the first four years make the training set, and the 5th year of data is the test set 
or comparison set. Goals include revisiting the traditional CAGR approach and discussing why ML is 
necessary, then building new ML-based forecasting models and conducting a comparative discussion. 
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2.4.2. Accuracy 

Accuracy is critical in comparing traffic predictions with measurements in the 5th year. One metric is the 
root mean squared error (RMSE) which measures the average difference between a statistical model’s 
predicted and actual values, as shown in the following equation. A good predictive model shows a RMSE 
much smaller than the mean and variance of the training set. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
∑(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣 − 𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑣𝑣𝑝𝑝 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣)2

𝑛𝑛𝑎𝑎𝑛𝑛𝑛𝑛𝑣𝑣𝑝𝑝 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑜𝑜𝑛𝑛𝑝𝑝
 

Although widely used to determine the accuracy of a given predictive model, it may be challenging to 
compare the performance of different models using RMSE.  

2.4.3. ML Pipeline 

All ML pipelines were implemented within Amazon Web Services (AWS) cloud computing platform. 
The authors used S3 for data storage, Athena for data access, and SageMaker to train and test ML models. 
scikit-learn, statsmodels, pmdarima, and TensorFlow Python ML modules were used for the 
implementation. 

3. CAGR Approach to Network Traffic Forecasting 
CAGR is one of the most popular forecasting methods to predict traffic in the cable industry. Total traffic 
across the entire network at a specific time makes a time series, a regression function is fitted to that time 
series, and a growth rate is derived to determine CAGR. The resulting CAGR coefficient is used 
anywhere in the network and whenever forecasting is needed. 

3.1. Global CAGR 

Simple CAGR implementations typically rely on either linear or exponential regressions. Figure 7 
provides time series for the sum of traffic, i.e., blue curve, across the network—or more precisely, for the 
subset of 30 links under consideration. It is noticeable that fitting an exponential regression function to 
total traffic, in bit counts aggregates over months, is more appropriate than a linear regression line. The 
solid black curve corresponds to the exponential regression function that best fits the training set of data. 
Exponential regression equation is 𝑦𝑦 =  𝑛𝑛 ∗ 𝑎𝑎𝑥𝑥, where regression coefficient 𝑎𝑎 is the growth factor for the 
monthly periodicity under consideration. 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 = ((𝑎𝑎 + 1)12 − 1) ∗ 100 derives annual growth from the 
monthly growth rate.  
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Figure 7 – Global CAGR Estimate 

3.2. Limitations of Global CAGR Approach 

CAGR is straightforward to implement and is one of the best-known approaches to estimating compound 
traffic growth rates. However, there is much room for improvement when using the resulting growth 
factor for traffic forecasting. One drawback is the tendency to naively apply the estimated CAGR to the 
most recent measurement. For illustration, the solid gray line in Figure 7 shows predictions from applying 
the global CAGR to traffic measurement in June-2022, the most recent trace on hands. On the contrary, 
see how dotted gray lines adjust using the same growth factor but with the minimum and the peak 
measurements over the past twelve months (i.e., from July-2021 to June-2022). Traffic levels are too low 
or too high in seasons, and spending aligns between the regression and dotted prediction curves. 

Table 1 also reveals poor accuracy for the CAGR approach. In all cases, RMSE is higher than the 
standard deviation although much smaller than the mean. Before applying the global CAGR to individual 
links, we can already see that its prediction accuracy is questionable. A good practice is tracking 
predictions over actual values to re-evaluate any forecasting model. 
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Table 1 – CAGR Accuracy Checking [Total Traffic]  
Strategy for 
Predictions 

[Mean, std] RMSE 

Exp. reg. curve [5.06 Tbps, 2.05 Tbps] 3.95 Tbps 
Most recent date 2.53 Tbps 
Minimum over past 
12 months 

2.36 Tbps 

Peak over past 12 
months 

5.01 Tbps 

3.3. A Distributed CAGR Strategy 

The other concern is considering the total-traffic CAGR as the growth factor of every link across the 
network. Figure 8 illustrates the problem: the x-axis corresponds to traffic peaks for individual links over 
the 48 months of training, and the y-axis gives CAGR in percentage. The red line is the global CAGR, as 
discussed in section 3.1. Scatter plots are CAGRs resulting from applying the exponential regression 
function to each link; 2/3rd are more than 10% above or below the global CAGR. The observation remains 
true in areas with the most concentration of links traffic or maximum traffic measurements, expected to 
influence total traffic trends greatly. 

 
Figure 8 – Global vs. Local CAGR 

Figure 9 is for the longhaul illustration, is for the international reference link, and Figure 11 is for the 
metro link use case. The three charts show predictions when applying the global CAGR in gray vs. the 
local CAGR in green to the prior-mentioned links. The black curve is for the exponential regression 
applied directly to the link instead of the total traffic. As before, solid curves are for cases when CAGR is 
applied to the most recent measurement, while dotted lines are for maximum and minimum measurements 
within the previous year. The actual traffic measurements match the colors for internal longhaul, 
international link, and internal metro in Figure 1 network topology. Comparing the green and gray lines 
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illustrates the gap between local and global CAGR predictions. One might be closer or farther from the 
actual measurements, depending on how similar local and total traffic trends look alike. 

 
Figure 9 – Global vs Local CAGR Predictions for internal longhaul link 

 
Figure 10 – Global vs Local CAGR Predictions for international link 

 
Figure 11 – Global vs Local CAGR Predictions for internal metro link 
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In summary, the simplicity of CAGR makes it appealing to cable operators. Trials in Section 3 show that 
a local CAGR, specific to its given link, performs much better than the total-traffic CAGR. The other 
intake is to define a logic behind the choice of reference traffic measurements to which the growth factor 
is applied; otherwise, extend regression curves to future times. 

4. Exploring Machine Learning Time Series Models 
The level of accuracy for CAGR-based predictions is still very high. The reason is that linear and 
exponential regressions supporting CAGR calculation focus on the trend only, while intuitions and other 
empiric observations suggest a certain periodicity in Internet traffic. Machine Learning offers a broad 
range of models, including time series models, specialized in analyzing and forecasting data collected 
over time, such as daily, weekly, monthly, or yearly observations. 

A typical quick verification to check for periodicity in network traffic is to plot total traffic trends over 
months or weeks of a year for various years, over days of the months for multiple months, or even days of 
the week for different weeks. Figure 12 illustrates this principle for the network use case. Comparing 
yearly trends over months confirms slight seasonality in the data; November shows higher activities than 
other months, but nothing is clearly defined. 

 
Figure 12 – A Naïve Look at Total Traffic Periodicity 

4.1. Seasonal Decomposition of Time Series (STL) 

Seasonal Decomposition Time Series (STL) is an ML technique that uses filters to handle seasonality and 
trend variations in a time series. STL separates trend, seasonal, and residual components from time series 
data. The trend component gives the overall movement over time, the long-term direction or pattern in the 
data. The seasonal component is the repeating and predictable patterns at regular intervals, such as daily, 
monthly, or yearly cycles. The residual component is random fluctuations or noise after removing the 
trend and seasonal components. 

Figure 13, Figure 14, Figure 15 and Figure 16 show decomposed time series applying STL to total traffic 
and traffic traces from long haul, international, and internal metro sample links. There are two STL 
options: additive vs. multiplicative; Figure 13 and Figure 14 result from the additive model, while the 
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other two come from the multiplicative version. In the additive case, adding trend, seasonal and residual 
components produce the actual observation; in the multiplicative model, the multiplication of the 
components produces the actual observation. 

STL allows deep insights into underlying patterns and variations within the data. There is a clear yearly 
cycle in all illustrations; the low season is from July to August, and traffic starts ramping up in 
September, when students return to school, to reach its peak in November, maybe due to extensive online 
shopping around Back Friday. There are also local maximums in May and June that might be due to 
graduation or final games for Stanley Cup, NBA, and NFL sports. The international and metro links also 
show peaks in February and March; is this happening during the Super Bowl final and the release of new 
versions of smartphone OS and video game updates? Cable operators may want to confirm the events 
influencing traffic peaks by decomposing traffic time series at the day or the week granularity. Regarding 
trends, COVID-19 lockdowns significantly influence traffic trends, even a year after everything returned 
to normal. However, that lockdown period does not affect the periodicity component.  

 
Figure 13 – Seasonal Decomposition for Total Traffic (additive) 
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Figure 14 – Seasonal Decomposition for the internal long haul link (additive) 

 

 
Figure 15 – Seasonal Decomposition for the international link (multiplicative) 
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Figure 16 – Seasonal Decomposition for the internal metro link (multiplicative) 

4.2. Forecasting Models for Network Traffic Time Series 

As earlier stated, time series models consider the sequential nature of the data and aim to capture patterns, 
trends, and seasonality to make predictions about future values. STL does not directly predict the future 
but prepares for more accurate forecasts and predictions by identifying both trend and seasonality. There 
are various time series forecasting models, each with strengths and suitable applications. A few examples 
appropriate for network traffic forecasting are seasonal autoregressive integrated moving average 
(SARIMA), holt-winters exponential smoothing (ETS), Prophet from Facebook, long short-term memory 
(LSTM), and vector autoregression (VAR) extending autoregression to the analysis of interdependencies 
among multiple time series. The choice of the most appropriate model depends on the nature of the data, 
the presence of seasonality, the desired forecasting horizon, and the complexity of patterns in the time 
series. 

4.2.1. Holt Winters Exponential Smoothing 

Exponential smoothing (ETS) is a family of models using weighted averages of past observations to 
forecast future values, with different methods for handling trends and seasonality. Holt-Winters is a 
popular extension of ETS that consists of three components: level, trend, and seasonality. The level or 
smoothing component represents the time series' overall baseline or average value. Based on the current 
observation and a smoothing parameter alpha, the smoothing component updates at each time step. The 
trend component captures the time series' direction and rate of change. It is updated using a smoothing 
parameter (beta) that adjusts the trend over time. The seasonality component accounts for repeating 
patterns in the data; it updates with a smoothing parameter (gamma) that adapts to seasonal changes. 

The data's presence and type of seasonality instill variations in forecasting with Holt-Winters. No 
seasonality Holt-Winters ETS is suitable for time series data without any seasonal patterns. Another 
variant is the additive seasonal model, appropriate when the seasonal fluctuations are consistent in 
amplitude and added to the trend and level components. The multiplicative seasonal variant is suitable for 
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this traffic study, where the seasonal fluctuations increase and decrease with the level of the traffic time 
series. Python library statsmodels provides a framework for the Holt-Winters ETS multiplicative model, 
ready to be fitted in the data to generate predictions. Section 4.3 discusses Holt-Winters model 
performance.  

4.2.2. Seasonal Auto Regressive Integrated Moving Average (SARIMA) 

SARIMA extends the Autoregressive Integrated Moving Average (ARIMA) model and handles time 
series data with both non-seasonal and seasonal patterns, making it more suitable for datasets that exhibit 
recurring seasonal variations. ARIMA and SARIMA require making time series stationary before they 
can be applied. Trend and seasonality are removed from stationary time series to keep the mean, variance, 
and autocorrelation constant. 

SARIMA model has two sets of hyper-parameters, (𝑝𝑝,𝑝𝑝, 𝑞𝑞) and (𝑃𝑃,𝐷𝐷,𝑄𝑄, 𝑝𝑝); where 𝑝𝑝 is the order of the 
autoregressive (AR) component capturing the linear relationship between the current observation and its 
lagged values, 𝑝𝑝 is the degree of non-seasonal differencing required to make the time series stationary, 
and 𝑞𝑞 is the order of the moving average (MA) component capturing the linear relationship between 
current observation and the residual errors from past observations. 𝑃𝑃, 𝐷𝐷 and 𝑄𝑄 are respectively SAR or 
seasonal AR, seasonal differencing, and SMA or seasonal MA; they are similar to 𝑝𝑝, 𝑝𝑝 and 𝑞𝑞 but for the 
seasonal part. The last parameter 𝑝𝑝 gives the length of the seasonal cycle (𝑝𝑝 = 12, for the use case since 
data are monthly aggregations with yearly seasonality.) 

Python library statsmodels provides a framework for SARIMA. If this simplifies the model fitting and 
predicting, it still requires setting and tuning hyper-parameters for prediction accuracy. Literature shares a 
simple strategy encapsulating SARIMA into a for loop, feeding it with a range of possibilities for each 
hyperparameter, and keeping the combination of hyperparameters with the least RMSE. Section 4.3 
compares SARIMA performance with other time series models for network traffic forecasting. 

4.3. Which Model is Best for Network Traffic Forecasting? 

Figure 17, Figure 18 and Error! Reference source not found. give a closer look at the predictions for 
longhaul, international, and metro reference links. In all charts, exponential regression shows the worst 
performance, and ML time series techniques significantly improve predictions. SARIMA performance is 
inconsistent; the model reproduces previous traffic values after the MA window size. AR and MA 
hyperparameters require more tuning to perform. Holt-Winters ETS offers a good balance between 
performance and a simple implementation without further tuning.  
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Figure 17 – Comparison of ML Model Predictions for internal long haul link  

 

 
Figure 18 – Comparison of ML Model Predictions for international link  
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5. Key Insights 
The following recommendations are based on our study forecasting traffic on a subset of 30 bundle-
intraconnects from an internet backbone. 

Most people will agree that the insights are only as good as the data used, so data cleaning is crucial to the 
success of any analysis. Reconciling missing and hidden information from the past can be time-
consuming and frustrating, but the outcome is well worth the hassle. Part of clean data collection must 
also consider network changes, technology evolution, and network management and collection tool 
migrations. One may want to archive the lowest granular datasets and create suitable aggregations.  

Network growth estimated for the entire network is not appropriate for the capacity planning of individual 
network links. This paper shows that different links have different growth rates, so applying a blanket 
growth rate for each link may result in inaccuracy in traffic forecasting. The authors recommend 
estimating the growth rate for individual links separately. 

CAGR may be appropriate when determining the growth of the entire network, but it is less accurate for 
capacity planning. However, it is still widely used by cable operators due to its simplicity. This paper 
demonstrates how forecasting accuracy is impacted when applying CAGR on the most recent data 
sample. The authors encourage applying it on a window summary statistic instead. 

CAGR's low performance in traffic forecasting starts with blindness to seasonality when calculating 
growth rates. ML can extract seasonality and trend, making it more appropriate for network traffic 
forecasting. No need to be intimidated by the term "Machine Learning." In the end, it is doing statistical 
analysis more efficiently. ML models are readily available in popular programming languages like Python 
and R or other proprietary programs.  

When choosing the appropriate model, attention should be given to the nature of the data set. In this 
study, Holt-Winters ETS combines simplicity in understanding and implementation with efficiency in 
forecasting. SARIMA performs as well but requires careful tuning of hyperparameters.  
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Abbreviations 
 

AR autoregressive component 
ARIMA autoregressive moving average 
AWS Amazon web services 
CAGR compound annual growth rate  
ETS exponential smoothing 
MA moving average 
MAPE mean absolute percentage error 
ML machine learning 
NMS network management system 
RMSE root mean squared error 
RNN recurrent neural network 
SAR seasonal autoregressive component 
SARIMA seasonal autoregressive moving average 
SAM seasonal moving average 
STL seasonal decomposition of time series 
SDN software-defined networking 
VAR vector autoregression 
WFH working from home 

 

Bibliography & References 
 

Norwell, MA: Kluwer Academic Publishers, 2001: Principles of Forecasting: A Handbook for 
Researchers and Practitioners; J. Scott Armstrong 

Texts (2nd ed): Forecasting Principles and Practice; Rob J Hyndman and George Athanasopoulos 

O’Reilly September 2006: Introduction to Machine Learning; Andreas C. Muller; Sarah Guido 

O’Reilly March 2018: Machine Learning with Python Cookbook; Chris Albon 

 
 


	1. Introduction
	2. Case Studies
	2.1. The Network Graph
	2.2. Data Collection Over Time
	2.3. Traffic Overview and Modelling
	2.4. The Study
	2.4.1. Main Objective
	2.4.2. Accuracy
	2.4.3. ML Pipeline


	3. CAGR Approach to Network Traffic Forecasting
	3.1. Global CAGR
	3.2. Limitations of Global CAGR Approach
	3.3. A Distributed CAGR Strategy

	4. Exploring Machine Learning Time Series Models
	4.1. Seasonal Decomposition of Time Series (STL)
	4.2. Forecasting Models for Network Traffic Time Series
	4.2.1. Holt Winters Exponential Smoothing
	4.2.2. Seasonal Auto Regressive Integrated Moving Average (SARIMA)

	4.3. Which Model is Best for Network Traffic Forecasting?

	5. Key Insights
	Abbreviations
	Bibliography & References

