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1. Introduction 
On Comcast’s road to 10G, the virtual cable modem termination system (vCMTS) platform plays an 
integral part in ensuring the latest Data Over Cable Service Interface Specification (DOCSIS) technology 
is available to offer higher speeds and the best service to customers. The vCMTS platform is expanding 
rapidly, which enables enhanced flexibility, scalability, and cost-effectiveness. Therefore, ensuring the 
stability of this platform is critical, given its significance. However, the introduction of software upgrades 
often poses challenges for network operators, as it requires meticulous monitoring to detect and address 
any potential anomalies that may arise in the post-upgrade phase. To overcome these challenges, several 
systems have been put in place, such as the Automated Network Health Checks. These systems monitor 
the network's health immediately after deployments or software upgrades, and tools are available for 
alerting based on a set of key performance indicators (KPIs). While these instantaneous checks are 
valuable, certain KPIs and telemetry metrics may take hours to days to reveal underlying service 
degradation. At present, there is limited visibility into detecting these anomalous trends on Distributed 
Access Architecture (DAA), which could indicate a slow degradation of the platform's health. This paper 
proposes a comprehensive solution that leverages data science, machine learning, and big data techniques 
to continuously monitor and detect anomalous trends that could indicate a slow deterioration of platform 
health and then alert the operations team of any unusual activity. 

2. Methodology 

2.1. Anomaly Detection and Data Science 

Identifying anomalies in data is an important task in many fields, and a variety of approaches have been 
developed over time to try to solve this problem. Understanding these various approaches to anomaly 
detection is crucial in determining the most suitable solution for the given problem. This section will 
briefly cover these approaches, their advantages in and out of the long-term network monitoring domain 
and background that contributes to the design of the anomaly detection system. Although different survey 
papers have categorized various machine learning approaches for anomaly detection in different ways, 
some of the more common approaches have been categorized as: classification-based, clustering-based, 
nearest-neighbor based, knowledge-based, statistical, and deep learning-based (Bhuyan et al. 2014 and 
Chandola et al. 2009). 

The advantages and viability of a particular machine learning approach are often dependent on the 
problem context and format of the available data. Some problem contexts contain very high-dimensional 
data, while others are univariate; in some contexts, anomalies are clearly labeled in the training set, while 
in others they must be inferred. Classification-based approaches often work well when true anomaly 
labels and many features exist in the training data, while many statistical approaches can work well 
despite the absence of these. Furthermore, adjustments or modifications to an approach are often 
necessary to better fit the intricacies of a particular problem context. 

In the context of detecting anomalous trends in some very different network metrics that don’t have direct 
relationships with each other, there can be many benefits to utilizing a different approach that naturally 
goes with each metric. One benefit is it gives the freedom to customize each approach to that metric 
instead of limiting the options to modifications that only work in generality. However, as different as 
some metrics may be, they often can still benefit from and inform each other; thus, there is also an 
advantage in not keeping models siloed from each other. To that end, additional value can be achieved by 
building a higher-level aggregating model that is able to combine the insights from the metric-specific 
models and help produce an actionable summary of what is going on with the network. In this way, one 
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can both get interpretable information at a granular, metric-specific level as well as leverage the 
relationships between metrics to get a higher-level summary of the network overall.  

2.2. Data Overview 

The DAA architecture offers rich telemetry, from before the headend to the device. The DAA telemetry is 
multidimensional; each metric monitored in the anomaly detection system is a timeseries with different 
properties, both in terms of frequency (ranging from 15-second telemetry to hourly polls to event-based 
data), the infrastructure level, and the sources of the data. See Eppes et al. 2022 for more details around 
the DAA infrastructure. The infrastructure levels in scope for anomaly detection encompass the cable 
modem (CM), remote physical device (RPD), physical pod (PPOD), etc.  

The anomaly detection pipeline leverages an existing telemetry collection process (Stehman et al. 2021) 
that is built on top of cloud computing tools like Apache Spark, which facilitates the parallel processing 
needed to operate on data at this scale in an efficient manner on a distributed framework. The process 
collects the data from each source by polling the different data sources on an automated schedule; it then 
aggregates the telemetry data on the PPOD-level and the RPD-level into a standardized format for further 
analysis. The four major metrics that are in the current scope of this project are: 1. CM Registration States 
2. Interactive Voice Response (IVR) 3. Quality of Experience (QoE) 4. Traffic/Switch Metrics.  

The CM registration status data consists of 15 second polls, aggregated up to a 5-minute level indicating 
the registration state of the CM at each polling interval. It captures the state of the CM's attempt to pair 
with the CMTS, polls the CM at periodic intervals, and assigns a status based on the response and the 
DOCSIS specifications of the modem. The polls are aggregated such that the highest impact state in a 5-
minute window is considered. This data tends to have a pattern to it – specifically, the nightly reboots that 
some device types undergo during the maintenance window. These would need to be accounted for as 
non-anomalous but would also need to factor into an algorithm such that, during that time, if more 
devices than expected go into an offline state or begin to waver, that would still be flagged as an anomaly. 

Next metric is the IVR metric, which comprises of support calls that are made by customers. The IVR is a 
technology that allows a computer to interact with people who call using voice and keypad inputs. These 
systems are used in servicing high call volumes, reducing cost, improving the customer experience, and 
providing a self-service experience. The system uses a routing mechanism to determine where the call is 
directed based on the customer input. It also collects information on whether there is a current outage in 
the area and provides that information to callers. High call volumes or specific call categories can indicate 
regions that are experiencing increased dissatisfaction when comparing call volume before and after a 
deployment. By identifying these pain points, the operations teams can take measures to further 
investigate where the issues are or corroborate with other metrics to determine the need for a rollback. 

The QoE measure is an aggregate score which considers a wide range of metrics to determine the device's 
performance. Largely Wi-Fi based, it considers network performance factors such as the data rates, signal 
strength, packet error rate, any noise or interference on the channel, channel utilization broadband 
throughput, and the topology of the network. It also factors in the device type, capabilities of the device, 
DOCSIS version, current and historical data usage, and other specific environmental factors.  

The last major group of metrics is the traffic metrics. These metrics serve as counters, keeping track of 
the packets flowing between various components within the switch leaf architecture. Specifically, the 
focus of these metrics lies in monitoring unicast traffic, encompassing packets transmitted between the 
residential U-Ring router (RUR), leaf switches, vCMTS host, and other elements of the architecture. 
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When anomalies arise from this network connection or the RUR device, they indicate potential 
impairments or disruptions in the link between the RUR router and the leaf switch. Additionally, another 
pair of traffic metrics considered is the octet in/out counters, which quantify the total number of octets 
received or transmitted via the interface, including both header and frame characters. Discontinuities in 
the value of this counter can occur during management system re-initialization or other connection drops. 

It is worth noting that traffic metrics exhibit distinct patterns over time. Generally, they demonstrate a 
diurnal cycle with peak values during the day and lower values during the night. Furthermore, traffic 
tends to increase during holidays and weekends. Hence, any effective time series anomaly detection 
model must possess the capability to comprehend these patterns, decompose the seasonal elements, 
establish a baseline, and subsequently identify data points that deviate from the expected norms. The use 
of these metrics will be further discussed in Section 4.2. 

2.3. Solution Architecture 

Analyzing near real-time telemetry on several KPIs for anomaly detection is a daunting task. To address 
this challenge, a sophisticated yet flexible workflow solution has been developed to apply an anomaly 
detection model to each KPI and trigger alerts to relevant stakeholders. 

 
Figure 1 – Software Deployment and Continuous Monitoring Integration 

The architecture uses a powerful analytics platform that has big data processing capabilities, machine 
learning tools. Aside from the platform’s core data abilities, the anomaly detection solution is developed 
and deployed in this platform due to a few reasons. Firstly, it is on the same platform as the telemetry 
collection solution as mentioned in Section 2.2, providing continuity and centralization of tools. Second, 
it is designed for collaboration, making it easy to share and contribute to across the data sciences team. 
Third, the platform makes it easy to interact with the system, deep-dive and perform analyses on the 
models, as well troubleshoot updates. Lastly the platform has workflow and scheduling capabilities, 
which is essential in automating and scaling the anomaly detection system. 

The workflow runs at set intervals and has the capability to extract, transform and load (ETL) data and 
run models at different times. The first step in the workflow is determining which KPIs are required for 
anomaly detection and which PPODs are of focus in that run. A PPOD is included in the workflow if it 
had a software deployment in the previous week. Each PPOD is monitored for an entirety of a week; see 
Figure 1 for a PPOD’s network monitoring timeline. If the KPI is scheduled for anomaly detection, the 
telemetry data is ingested and prepared for anomaly detection. Next the respective anomaly detection 
model is applied; each KPI has an individual anomaly detection model, Section 2.4 will discuss these 
models in more detail. In order the keep the ML models from going stale, there is also automatic re-
training based on criteria developed with the help of subject matter experts (SMEs); this includes the 
amount of time that has passed since the last training, if there is a new deployment to the PPOD, or if 
there is an extreme change in the historical data such as an RPD move, etc. If there are anomalies 
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detected, each alert is assigned a universally unique identifier and prepared for alerting and reporting. The 
alert information as well as helpful metadata will go into a data storage system. An informative 
visualization of the anomaly, unique to each KPI, is also generated at the time of anomaly detection and 
saved to a storage container. 

A single run can contain a handful of anomalies from multiple KPIs, so it is important that the alerts are 
presented in an organized manner and provide information that aids prioritization of alerts for 
investigation. The compiler step in the workflow handles the compiling of alerts and communicating them 
to stakeholders for validation; utilizing the unique alerts and information saved internally at the time of 
alert generation. There are two parts to the report, the first organizes the anomalies’ visualizations into a 
document by PPOD and orders by KPI type. By presenting the anomalies in a clear and concise format, it 
allows easy sharing of information and enables a common understanding of the detected anomalies. The 
second part of the report is a spreadsheet that organizes the sheets by KPI/alert type and sorts by the 
percent of CMs that can be tied to the anomaly. The spreadsheet also contains additional supporting data 
relevant to each anomaly type as well as correlation to existing network monitoring events, providing 
valuable context to the anomalies. Details around the supporting data will be discussed further in Section 
2.5. Presenting the alerts in this way promotes effective communication, enables informed decision-
making, and ultimately contributes to maintaining a resilient and high-performing network. 

In the final phase of compiling the anomaly detection alerts report, the report is automatically shared with 
stakeholders through a cloud-based collaboration platform for communication. In this phase of the 
system, the report is shared for not only investigation but also validation which will be discussed in 
Section 3. See Figure 2 for the full cycle of the anomaly detection workflow. 

 

 
Figure 2 – Anomaly Detection Architecture 

2.4. Anomaly Detection Algorithms 

This section will discuss the details of each anomaly detection model to the KPIs introduced in Section 
2.2. The models range from statistics-based to unsupervised machine learning models and all come with 
nuances that are important in building an accurate and reliable anomaly detection system.  

For post-deployment long term monitoring, all models follow similar criteria for validating and alerting 
an anomaly. Since deployments can result in different behavior immediately after, the first is omitting 
anomalies up to 12 hours after a deployment. Any behavior in those hours is caught in the instantaneous 
network health checks or is expected, so they do not warrant an alert. The second is incorporating 
threshold criteria for alerting, requiring the anomaly to reach a severity threshold in time and/or maximum 
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customer impact (these data points also play into ranking later). Section 4 will mention the future work of 
incorporating causality, further improving the accuracy in distributing anomalies in front of the right 
stakeholder. 

2.4.1. Cable Modem Online Signal  

The initial anomaly detection algorithm was developed for the CM Online signal. Instead of relying solely 
on thresholds, this algorithm considers historical patterns and the severity of fluctuations in the CM 
signal. As mentioned in Section 2.2, when an RPD is re-booted, all CMs will go offline momentarily, but 
since it is instant and expected it should not be considered an anomaly. Similarly, during maintenance 
windows, it is possible to see the same pattern for a given RPD each day which is also not anomalous. 
The CM algorithm overcomes this by utilizing statistical methods for anomaly detection, providing a 
lightweight yet powerful model with results that can be easily interpreted. 

As mentioned in Section 2.1, standard deviation in time-series anomaly detection provides a lot of power 
and is the core of the CM anomaly detection model. To reach that predictive power, pre-processing is the 
first step which includes removing extreme outliers, normalizing, and differencing the data. After pre-
processing, the following method is applied to each timestamp. Initially, a fixed number of hours is 
looked back on, and a rolling window of approximately one hour is applied. Next, the standard deviation 
of each window is calculated. If a large percentage of the windows exceeds the standard deviation 
threshold, the timestamp is considered an anomaly. By adjusting the window size and applying 
appropriate thresholds, the model becomes less sensitive to sudden or small-scale anomalies, thereby 
increasing accuracy in identifying anomalies that warrant alerts in this domain. 

 
Figure 3 – CM Signal Oscillating Post-Deployment Anomaly Example 

Figure 3 exemplifies a historical CM anomaly that occurred several days after the software deployment. 
The anomaly persisted for several days and is caught when applying the model, alerting during the 
monitoring window. The model’s ability to catch this known anomaly highlights its potential to alert 
stakeholder from the initial day of occurrence. It is worth noting that examples of this scale are now rare 
as they are actively flagged and addressed immediately with the CM anomaly detection model in 
production.  

2.4.2. Customer Calls (Interactive Voice Response)  

As mentioned in Section 2.2, IVR works as a comprehensive metric when monitoring the network post 
upgrade. Customers can call in at any time of the day for a multitude of reasons, either network platform 
related or not (billing questions, in-home support, etc.). Detecting anomalies on the PPOD in and out of 
peak hours is crucial as a spike in calls can be very telling of the state of the network. Since customers for 
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each PPOD exemplify different historical patterns, that is not related to the software deployment, a simple 
threshold-based model does not apply. The anomaly detection system utilizes a generalized extreme 
studentized deviate (ESD) detector for IVR at a PPOD level. The ESD is a statistical method used for 
detecting outliers or anomalies in a univariate dataset. The IVR model takes a statistical approach for 
similar reasons as CM Online Signal; the model is easy to understand, implement, and flexible due to 
significance level and maximum number of outliers thresholds within the model. To incorporate severity 
of the customer calls, the algorithm is applied to the rolling percentage of IVR to total number of CMs in 
the PPOD. The model accurately detects impactful customer call anomalies that then can be correlated 
back to a deployment. 

Figure 3 illustrates an instance of an anomaly (red dot) occurring after a software deployment (dashed 
vertical line). The green shaded area represents the monitoring window within which the anomaly 
detection system analyzes the metrics, if there is an anomaly within the window then it is alerted on. It is 
evident that the anomaly detected is valid in comparison to historical trends prior to the deployment, but 
the question still lingers if this anomaly is directly tied to the deployment. This example will be further 
discussed in Section 2.5. 

 
Figure 4 – Spike in IVR Post-Deployment Anomaly Example 

2.4.3. Quality of Experience 

Quality of experience is a metric derived from multiple network performance statistics (latency being 
one) that represents the experience of residential high-speed data (HSD) customers. When certain 
thresholds are crossed, a QoE issue occurs at the cable modem level. When traffic gets congested or some 
event adversely affects network health, the number of CMs with QoE issues will grow. However, the QoE 
metric tends to follow regular patterns depending on the hour of the day, day of the week, holiday 
schedule, etc. The challenge is being able to capture an adverse effect on the network at any time and not 
just during peak hours when some upper bound is pushed too far. To that end, one goal is to be able to 
accurately model what is typical at every hour and every day of the week. Furthermore, since the network 
is constantly evolving, another goal is to capture this evolution while still catching any slow deterioration 
in network health. While capturing cyclic patterns in the data is typically handled by the model itself, 
capturing the evolution of the network can be jointly tackled by both the model and various heuristics in 
the application layer. Some logic in the application layer we use to trigger model retraining includes data 
shifts caused by RPD movements related to the PPODs, irregular historical patterns that cause exploding 
forecast uncertainty, and redeployments of PPODs. 

Several univariate modeling approaches that don’t require covariates were considered. One approach that 
was considered is a mixture model (e.g., Gaussian mixtures). However, these models have natural 
limitations when it comes to capturing dependencies between timestamps (sequential dependency); much 
of their advantage also disappears when we limit them to a single metric. One way to convert a mixture 
model to capture sequential dependency is to form a hidden Markov or attempt to add more flexibility 
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with a long short-term memory (LSTM) or other deep learning architecture. Although these approaches 
have the benefit of using a single model on a variety of different time series, one downside is the lack of 
interpretability when trying to understand model predictions and align them with domain expertise. Deep 
learning approaches can also run into issues with their lack of consistency in their uncertainty estimates. 
Frequentist autoregressive approaches (e.g., ARIMA) are another option, and they provide a better 
uncertainty framework. However, such models can be tricky to adapt when multiple cyclic patterns are 
present; they also can run into similar interpretability issues since their data generative process is very 
statistical and often obscured by various transformations. After further understanding the need for a QoE 
anomaly detection model and the advantages and disadvantages of some approaches, it led to the 
development of the model currently in production. 

A dynamic linear (state space) model was developed to capture the multiple cyclic patterns in the data and 
get reasonable model interpretability. To acquire uncertainty estimates in these patterns, the model was 
made Bayesian. In the Bayesian framework, such a model can suggest interpretable latent variables that 
evolve according to a pre-specified pattern (e.g., hourly repetitions) that generalizes well and is controlled 
by simple parameters (such as regression coefficients). See Figure 5 for these detected patterns in the QoE 
data with the model. The Bayesian variation then considers the observed data to be composed additively 
by the latent variables and computes the posterior distribution of all parameters simultaneously; this 
computation of the posterior takes into account both the likelihood of the observed data (based on our 
model specification) and priors (having mainly a regularization role here). Some key components that can 
help with anomaly detection are ‘dynamic’ (latent components can evolve), ‘linear’ (model specification 
that can generalize) and ‘Bayesian’ (priors that can regularize and model that can quantify uncertainty). 
Another benefit of this approach is it can be tuned to specify the sequential evolution of the latent states to 
explicitly get a stable level suitable for anomaly detection. 

 
Figure 5 – QoE Hourly and Daily Patern Detected by Bayesian Framework 

Since this is a statistical model without true anomaly labels, one of the challenges is identifying and 
accounting for anomalies that occur in the training data when learning the normal behavior of the system. 
Two common model-native solutions include setting the prior variance of latent or observation noise 
dynamically based on certain heuristics and using more flexible noise distributions to prevent outliers 
from having too much influence on fit. Another general solution, which takes advantage of workflows 
that retrain models at regular intervals, is to impute anomalies in the new training data using the 
prediction from the model that existed prior to this. Of course, this solution can have a cold start effect 
when there is no pre-existing model, and in that situation the model-native solutions mentioned 
previously can help with this. 
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Figure 6 – QoE Display Slow Degredation Post-Deployment Example 

Figure 6 is a QoE anomaly example, the blue represents the ratio of QoE events to CMs in the PPOD, the 
red vertical line indicates a software deployment, and the purple marks are anomalies detected. 
Timestamps are labeled as anomalies if the actual QoE ratio falls outside of the confidence bands (green, 
generated by forecast). The training data relies on empirical data prior to the deployment and retrains 
based on a handful of SME criteria (re-training step seen in Figure 2). These model characteristics result 
in a confident and telling QoE anomaly alert. 

2.5. Understanding Anomalies 

When constructing an anomaly detection system, it is crucial to instill confidence in individual alerts 
when presenting them to stakeholders. As the number of alerts scale with deployments, it is crucial to 
provide additional supporting data to help prioritize and understand the scenario. Therefore, the alert 
system provides useful metadata within the final report. 

To leverage the existing alerting systems, each anomaly is accompanied by a list of events that occurred 
within a few hours in its vicinity. It is important to have a wide correlation window since it is possible for 
events to be correlated but not occur at the same time. An example use case would be if there is a 
customer power outage (CPO) due to a storm event, it is possible for the power supply (PS) and node  
reside on a different part of the power grid than some customers that they service. If the storm event 
affects the grid with the PS (reaches end of discharge) but not the customers, then those customers would 
call in causing an IVR anomaly. Knowing this information, the anomaly alerted on is most likely not due 
to the network deployment being monitored. By using systems that track these events, the end-user would 
be able to make their own assumptions based on the events provided.  
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Table 1 – Example Supporting Data for Anomaly (Corresponds to Figure 4) 
alertId PPOD Alert Type Deployment 

Group Priority 
Existing 
Events 

CM Info 

example_uuid example_PPOD IVR LOW Storm Outage 
Event #A, RPD 
Unreachable #B 

X% offline 
DOCSIS 1.0, Y% 
offline DOCSIS 
3.0, Z% offline 

DOCSIS 3.1 

Another indicator of whether or not the anomaly is a side effect of the deployment, is the breakdown of 
CM behavior by DOCSIS version. The supporting data includes the count of offline CMs around the time 
of the anomaly, which can be especially valuable when an entire group experiences connectivity issues. 
This information guides subject matter experts toward a better understanding of the underlying cause 
behind the anomaly. 

Lastly, it is important to note that the deployments being monitored are scheduled in groups of PPODs. 
The supporting data also includes the anomaly priority for each PPOD in the report. If multiple PPODs 
within a group exhibit an anomaly compared to a single PPOD, it can be argued that the latter represents 
an isolated event, while the former group is more likely to display anomalies related to the deployment. 
Therefore, a group priority alert is assigned to each PPOD, with a high priority indicating multiple 
PPODs experiencing alerts, medium priority signifying a threshold crossing, and low priority assigned 
otherwise. By incorporating these measures, the end-users can maintain awareness of anomalies without 
prematurely drawing conclusions. This approach enables them to proactively respond to alerts in a 
manner aligned with the available information and take appropriate actions accordingly. 

Looking at Figure 3 again from Section 2.4.2, it is important to note that while these anomalies are valid, 
they can be influenced by various causal events unrelated to the deployment itself. In this example, the 
supporting data presented in Table 1 guides the operations team in identifying potential causes. The data 
includes information on existing events, cable modem (CM) details, and the priority of the deployment 
group. In this example, the existing events prove to be the most valuable in assisting the team to pinpoint 
a potential root cause (storm outage) and go from there. 

3. Performance and Impact Findings 
Detecting anomalies and evaluating the effectiveness of anomaly detection algorithms are pivotal steps in 
the development and deployment of models. However, this process presents challenges due to the absence 
of labeled anomalies, which can manifest as diverse patterns and trends such as contextual, point-based, 
seasonal, cyclical, or collective anomalies. Consequently, conventional evaluation metrics like precision, 
recall, F1-score, or AUC-ROC (area under receiver operating characteristic curve) may not be directly 
applicable in this context. 

To overcome this challenge of producing highly confident models without labeled data, the anomaly 
detection approach relies on empirical data and trend-based training to produce high-confidence results 
leading to increased performance. As mentioned in Section 2.4, this is done by either predicting future 
values and creating upper and lower confidence bounds (QoE model) or incorporating thresholds based 
on the empirical data (CM and IVR model).  

As described in 2.4.3, to further validate the identification of an anomaly, there is criteria to determine 
whether the empirical data for a specific period preceding the anomaly occurrence meets the requirements 
for exclusion, training or re-training. The network is ever changing and producing anomaly alerts from 
high-certainty training data is crucial.  
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By considering these exclusion and re-training criteria, we ensure that the anomalies identified by the 
algorithm are reliable and meaningful. This approach combines empirical data analysis, trend-based 
predictions, and criteria-based validation to enhance the accuracy and effectiveness of anomaly detection 
in real-world applications. The QoE example mentioned previously encompasses all of these high-
performance efforts. 

In addition to the above steps, measuring the effectiveness of anomaly detection algorithms involves 
correlating them with other events (Section 2.5) captured through existing systems and tools. Correlating 
with these events helps build confidence in the detected anomalies and prevents disregarding an anomaly 
that lacks corresponding events. 

When assessing the impact of modeling and detecting anomalies, the focus returns to the original 
objective outlined in Section 1. The goal is to identify service degradation over a period of time that may 
not be detected in instantaneous checks immediately after a deployment. Some degradations are gradual 
and may go unnoticed by existing tools. These degradations have a negative impact on customer 
experience and, if undetected, can be masked by other changes being rolled out. Figure 6 is a great 
example of a gradual degradation; as noted, the empirical data did not display a similar behavior as post 
deployment behavior, and the percent of QoE events slowly increases resulting in an impactful anomaly 
detection alert. 

To assess a subset of anomalies, network operations experts validated ~250 alerts over a span of two 
months. To date, these identified anomalies have demonstrated a 98% accuracy and low recall, implying 
that the algorithm is sensitive in capturing subtle changes based on empirical data. By incorporated expert 
feedback, various enhancements have been implemented. These include the grouping of anomalies based 
on deployment date and type, assigning severity based on the number of periods of degraded service, and 
considering the frequency of anomaly occurrences. 

Another important aspect is making the detected anomalies actionable by identifying their root causes and 
establishing correlations with other anomalies. This effort will be further discussed in a subsequent 
section. 

4. Future Work 
In the preceding sections, we provided an overview of the existing long-term monitoring system. Now, 
we turn our attention towards future endeavors that aim to propel the system closer to its ultimate 
objective of effectively suggesting rollbacks for DAA software deployments and offering correlation and 
causality for detected anomalies. One of these future endeavors is the incorporation of additional metrics 
and attempting supervised learning. 

4.1. Labeling Tools 

The goal for future models and metrics is to incorporate supervised learning for anomaly detection, which 
can significantly increase the confidence and accuracy of generated alerts. The process of supervised 
learning necessitates labeled data. As mentioned in Section 2.1, labeled data plays a crucial role in 
training an effective anomaly detection model. It provides ground truth information about which events 
are normal and which events are anomalous. It also enables the training of supervised learning models, 
especially for classification algorithms. By using these labeled examples, the model can establish a 
baseline, and learn the patterns, features and examples of which deviations beyond the baseline patterns 
are expected and which ones are unexpected. The availability of labeled data also helps in performance 
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evaluation – performance metrics like accuracy, precision, recall, F1-score, etc. can be used to understand 
and compare different models. 

However, the collection of labeled data comes with its set of challenges, mainly revolving around the 
requirement of human involvement, i.e., the need for subject matter experts to flag the anomalies. This 
challenge gets larger when factoring in scale, because as the size of the dataset increases, labeling 
becomes more challenging and time consuming. It is also a challenge to represent the different types of 
patterns, trends, and anomalies that exist in real-world data. 

To address some of these issues, two user interfaces (UIs) were internally designed to make event 
labeling easier. The first is a larger tool that operates on the cloud and facilitates collaboration and a 
shared directory to store the labels in. This is the tool that is intended to be the source of truth for future 
labeling efforts across multiple projects in data sciences. In the process of development for anomaly 
detection efforts, there is a second internal tool based purely in Python, HTML and JavaScript that 
incorporates various features to increase the simplicity of the labeling process. The process creates a 
standalone UI that displays time series views of a selected set of metrics of interest and provides features 
such as zooming, time range highlighting, event labeling, providing additional annotation, and the ability 
to export the changes into a CSV file.  

In order to standardize training set creation across future metrics, criteria are put in place to select time 
series samples with at least 28 continuous days of data and represent a wide range of samples – samples 
with no anomalies, samples that only had anomalies in the latter two weeks, and time series samples with 
anomalies throughout the time range.  

The next section will discuss the on-going efforts to expand the metrics monitored and discusses the first 
metric to utilize the labeling efforts for model development. By utilizing the developed labeling tools, 
there is a substantial labelled data set covering multiple scenarios across the platform footprint. Since the 
occurrence of anomalies is rare, the labeled data results in an imbalanced target variable. Thus, future 
approaches need to take this into account by either leveraging existing labels to take a semi-supervised 
approach or creating synthetic samples through up-sampling/down-sampling techniques, potentially 
improving future models' performance. 

4.2. Expanding Metrics Monitored 

Having a set of labeled anomalies to experiment with, this section will introduce an analysis on traffic 
metrics (previously mentioned in 2.2) and demonstrate how to use these labels to confidently select a 
model for production. This analysis compares a handful of models, both a set of naïve baseline models 
and forecasting models. Since this work is on-going and experimental, understanding each model 
evaluated is out of scope for this paper. The baseline models are light since they rely on simple heuristics 
(similar to CM Signal and IVR); they are interquartile range (IQR), delta-based, and Auto-Regression. 
The baseline captures regular patterns, traffic volumes, and expected behaviors. The set of forecasting 
models (similar to QoE) include ARIMA, exponential smoothing (Holt 2004), Facebook Prophet (Taylor 
and Letham 2017), Theta (Assimakopoulos and Nikolopoulos 2000), and Season-trend Decomposition 
(Hyndman and Athanasopoulos 2021). These methods involve forecasting the time series, computing 
residuals or error from the true values, and then setting thresholds on the residuals to identify where the 
data points are much further from where they would be expected to be.  

Evaluating event-based predictions presents another set of challenges, such as differences in temporal 
alignment or event durations. Imbalanced data is another challenge, since the occurrence of events is rare. 
Additionally, since the values being compared are pairs of true and predicted events, there is no concept 

https://otexts.com/fpp2/expsmooth.html#ref-Winters60
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of a true negative, which necessitates some specific metrics to provide a more meaningful assessment of 
model performance. 

To this end, the event matching criterion utilized a margin of 20 minutes, where predicted events were 
considered a match to true events if the predicted event occurred within 20 minutes of the true event. 
These matched events were then evaluated using precision, recall, F1-Score, and Jaccard index. All 
evaluation scores fall within a range of zero to one. 

Table 2 – Evaluation Score by Model for Traffic Metric (Leaf-MAGG) – Leading Methods 
Based on F1-score Highlighted 

 

See Table 2 for the evaluations of the models for each facet of traffic metrics. Given that the data is 
imbalanced, the models are primarily evaluated on the F1-score as it is considered best practice in 
evaluating imbalanced data sets. It is evident that exponential smoothing is the best model across the 
board, although the score is low that can be attributed to the size and nature of the sample data set. See 
Figure 7 for the experiment’s top two models’ results on a sample traffic metric. The top graph is the 
labeled event, the traffic metric experiences anomalous behavior after a software deployment. The middle 
and bottom graph are the results of the exponential smoothing and season-trend decomposition models 
respectively. Most anomalous timestamps are detected (green), some missed (red) and there aren’t any 
false positives which is beneficial in avoiding false alarms. The model for this metric is currently being 
developed, but by having labeled data the experimental models can be evaluated for selection and 
ultimately used for supervised ML. 
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Figure 7 – Traffic/Switch Anomaly Detection Development – Top Two Models on Leaf-

RUR Traffic Metric 

4.3. Alarm Correlation and Causation 

There are a handful of existing efforts and ideas on enhancing anomaly detection capabilities within the 
network infrastructure at Comcast, one is expanding existing KPIs discussed in sections 2.4 and 4.2 for 
measuring platform health. To accomplish the goal of autonomous anomaly detection holistically around 
different systems - i.e., platform health at home or radio frequency plant, the detection system will 
monitor additional metrics such as network latency or host utilization which will allow a full analysis of 
network performance capabilities in a more comprehensive manner.  

With this mindset towards proactive problem-solving extending beyond just end-user consumption but 
also analyzing correlation between different metrics and root-causes, the causality analysis should lead 
not only towards improvements regarding service reliability but also reduced customer downtime 
whenever hardware issues seemingly appear randomly.  

Essentially through extensive correlative investigation between detected anomalies along with pattern 
identification/detection throughout event occurrences, the anomaly detection system can actively prevent 
future instances of the same pattern tends to be on the horizon. Gaining insight into the causes behind 
different types of anomalies within the complex vCMTS platform architecture requires an approach 
where relationships are analyzed between various network metrics like latency spikes and host utilization 
rates. Also of note is establishing any existing correlations which would assist in identifying 
corresponding contributory factors towards such anomalous trends seen. Once common trends exist 
among different types of anomalies within our system environment via this data-driven approach, 
proactive measures could be employed through enhanced capacity planning/resource allocation strategies 
which optimize future performance.    
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In better distinguishing between isolated incidents and systemic issues awaiting triage, causal analysis can 
be conducted on the occurrences of these anomalous events. This helps in pinpointing specific changes to 
the network like software/hardware updates or hardware failures responsible as anomaly root causes. 
Once identified, it becomes easier to deliver tailored-fit solutions such as targeted software updates or 
hardware maintenance procedures geared towards ensuring comprehensive performance optimization. 
Producing the root cause can also minimize investigation time and speed up recovery. 

When these analytical methods are deployed across the network environment for all components, this will 
help identify recurring themes or common factors across multiple anomalies that occur when specific 
software updates are implemented. If discovered early enough, improvements like enhanced testing 
protocols could ensure future anomalies are prevented from occurring again.  

Lastly, implementing daily full-footprint anomaly detection offers precise insights into our entire platform 
through its simultaneous evaluation of all relevant metrics and KPIs across subsystems. Doing this across 
the entire platform will lead to a much clearer view of system behavior while providing improved 
precision towards preventing future problems from arising. Full-footprint analysis has potential to provide 
deep insights pertaining to complex interdependencies among various components resulting in 
unexpected behaviors showcasing potential issues throughout platforms as opposed to isolated incidents.  

Incorporating daily full-footprint (across all PPODs) analyses ensures superior accuracy and efficiency in 
detecting these anomalous occurrences since they enable establishing base norms and benchmarking them 
against new telemetry. Adopting this methodology empowers the organization with holistic understanding 
aligning all integral components, reinforcing fault-tolerance capabilities by extensive cross-functional 
validation rather than just viewing each KPI and anomaly as an individual siloed outpost.  

This approach also enables the identification of anomalies associated with cascading or correlated effects 
across diversified workplace components which could result in unexpected behavior. By expanding the 
scope of the analysis, the anomaly detection system will not only identify sporadic or intermittent 
occurrences but frequently mitigate associated impediments to maintain the relevant networks’ overall 
operational stability. Hence it can be summarized that full-footprint analysis proves imperative in 
detecting irregularities facilitated through intricate mechanics within the system, providing better user 
experiences while ensuring platform stability by capturing otherwise-infrequent aberrations of behavior 
affecting overall performance. 

5. Conclusion 
This paper presented a comprehensive analysis of anomaly detection post software deployment to detect 
slow deterioration in system performance. The sections covered big data architecture, ML techniques 
used to detect anomalies, challenges associated with detecting anomalies, particularly in the absence of 
specific patterns and the existence of various anomaly types. To address these challenges, the system 
relies on empirical data, trend-based training, and the establishment of validation criteria to ensure the 
accuracy and effectiveness of the anomaly detection algorithm. 

However, the work does not end here. As part of future endeavors, the application of the anomaly 
detection algorithm is planned to be expanded to encompass the entire virtualized platform daily. This 
expansion will provide a more comprehensive understanding of system behavior and enable the 
identification of anomalies that may not be captured in smaller subsets of data. Furthermore, efforts will 
be made to broaden the range of monitored KPIs incorporating additional metrics to enhance the overall 
analysis of system performance and correlate between different anomalies and identify root cause for the 
anomalies detected. 
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By addressing these future research directions, this work aims to contribute to the ongoing improvement 
of network anomaly detection techniques and the overall performance of virtualized platforms. 

Abbreviations 
ARIMA auto-regressive integrated moving average 
AUC-ROC area under receiver operating characteristic curve 
CM cable modem 
CPE customer premise equipment 
CPO commercial power outage 
DAAS distributed access aggregate switching 
DAA Distributed Access Architecture 
DOCSIS Data-over-cable Service Interface Specification   
ESD extreme studentized deviate 
ETL extract, transform and load 
HAGG hub aggregator 
HSD high speed data 
IQR inter-quartile range 
IVR interactive voice response 
KPI key performance indicator 
LSTM long short-term memory 
MAGG mother/master aggregator 
ML machine learning 
PPOD physical pod 
PS power supply 
QoE quality of experience 
RPD remote physical device 
RUR residential U-Ring router 
SME subject matter expert 
UI user interface 
vCMTS Virtual Cable Modem Termination System 
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