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1. Introduction 
Automated Proactive Network Management (PNM) is no longer an afterthought or a luxury but is 
considered table stakes when it comes to maintaining Comcast’s vast HFC (hybrid fiber-coaxial) network. 
Our networks experience a wide range of conditions that can degrade their performance over time. These 
conditions include issues such as loose connections between components, cracks and breakages in lines, 
disruptive energy, and signal impediments, all of which are inherent challenges in maintaining our 
constantly evolving network. The process of early detection and efficient mitigation minimizes service 
disruptions, reduces downtime, and leads to a better customer experience. Identifying the specific nature 
and root cause of network impairments also enables us to route repair technicians to the appropriate 
location, and reduces Mean Time to Repair (MTTR), thereby driving operational efficiency. 

Deploying OFDMA (Orthogonal Frequency Division Multiple Access) in the mid-split region of the 
spectrum has allowed us to offer ~3-10x higher upstream speeds to customers and is also an important 
steppingstone toward offering multi-gig symmetrical services using FDX (Full Duplex) under our 10G 
roadmap. D3.1 OFDMA allows the use of higher modulation levels up to 4096-Quadrature Amplitude 
Modulation (QAM) and provides up to 2x efficiency increases when compared to Single Carrier QAM 
levels of 64-QAM. Profile Management Application (PMA) systems are being used to manage OFDMA 
Profiles as described in our previous SCTE contribution [1]. However, PMA can also mask network 
impairments at a cost to capacity as an inherent component of its functionality. Therefore, it is critical to 
develop systems to perform PNM to reduce the impact of network impairments and enable the highest 
possible capacities and speeds. 

In this paper, we describe the use of Convolutional Neural Networks (CNNs) to identify network 
impairments within the mid-split region and share the current performance of our machine learning (ML) 
models. This effort is similar to our previous efforts to identify network impairments in OFDM and 
Downstream Single Carrier QAM (DS-SC-QAM) sections of the spectrum as described in our previous 
SCTE contributions [2,3]. 

2. OFDMA Impairments  
Receive Modulation Error Rate (RxMER) is an extremely effective metric for understanding network 
impairments as it picks up both core signal-to-noise (SNR) characteristics and signal imperfections. For 
OFDMA channels, RxMER at a granular mini-slot resolution is available. RxMER for D3.1 devices using 
OFDMA channels is polled at frequent intervals and stored in our data lake. The methods described to 
identify various impairments for OFDMA Channels in this paper are based on this high-resolution 
RxMER.  

Figure 1 represents RxMER samples where no impairments exist. These are characterized by the RxMER 
curves that are essentially flat over the entire width of the OFDMA channel with values over 40 dB. 
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Figure 1 - Normal OFDMA RxMER Examples 

2.1. Known Impairments 

While some sources of interference in the mid-split region such as VHF (Very High Frequency) were 
known beforehand, we have also encountered and identified additional interference types over the course 
of our mid-split deployments.  

2.1.1. VHF Ingress 

VHF over-the-air (OTA) ingress is one of the more common ingress sources in our OFDMA 
deployments. Depending on the location of TV Transmitters within a geographical area, one or more 
channels may be impacted as seen in Figure 2. 

 
Figure 2 - VHF Ingress 

2.1.2. Analog Modulator 

The Analog Modulator impairments are narrow band ingressors caused by an old VCR, a gaming console, 
or the wrong connector on an older set-top box connected to an outlet in the home. As seen in the image 
below, this impairment impacts the mini-slots at either 61.1 MHz or 66.1 MHz and is classified as Analog 
Modulator Channel 3 and Analog Modulator Channel 4 respectively. 
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Figure 3 - Analog Modulator Ingress 

 

2.1.3. RFoG Ingress 

RFoG (Radio Frequency over Glass) impairments are caused by customers who have disconnected their 
service and moved to another Fiber broadband provider but are still connected to our network. As 
compared to VHF Ingress and Analog Modulator Ingress, RFoG ingress impacts a much wider portion of 
the OFDMA spectrum because a set of downstream channels from the Fiber broadband provider 
interferes with our OFDMA spectrum. 

 
Figure 4 - RFoG Ingress 

2.2. Unknown Impairments 

In addition to the above impairments, we have also encountered a multitude of diverse impairment 
signatures that are currently under investigation for identification. This task presents significant 
challenges due to the intermittent nature of many of these impairments, posing obstacles in 
troubleshooting and accurately classifying them. We look forward to engaging with the broader PNM 
community in a collaborative approach to expand upon these efforts, benefiting the industry as a whole 
and advancing our collective understanding of these impairments.  

We have grouped the unclassified impairments based on their RxMER signatures and a selection of these 
unclassified impairments are displayed in Figure 5 below. The individual examples listed in each row 
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below come from the same node segment and thus increase confidence that they are caused due to the 
same underlying issue. 

 
Figure 5 - Unclassified OFDMA Impairments. Each row represents an unclassified pattern 

example, and columns represent RxMER samples from different devices on the same 
node segment. 
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There is some inherent noise in the RxMER measurements at an individual device level and even if the 
inherent quality of the spectrum doesn’t change, repeated measurements will show some variation. 
Outside of this expected variation, an analysis of RxMER over multiple time samples illustrates the 
transient nature of some of the above impairments. While many devices that exhibit the unclassified 
patterns were examined, we consider two devices, one of which exhibited Pattern 3 from Figure 5, and the 
other which exhibited Pattern 8 from Figure 5 to demonstrate the transient nature of some of the 
unclassified impairments. The individual RxMER measurements every ~5 minutes from these two 
devices over the course of 6 days are plotted as heat maps in Figure 6 and Figure 7. In the images, the 
colors scale from lighter blue, which represents RxMER values that happen infrequently, to darker 
orange, which represents values that occur repetitively.  

In Figure 6, the device exhibits the impairment pattern only a few times each day over the six days of 
observation. 

 
Figure 6 - RxMER Heatmap for a device with an unknown impairment - 1 

In Figure 7, we see that the impairment pattern only shows up a few times on two out of six days of 
observation. This device also appears to have VHF Ingress on channel 5, which is more prevalent. 
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Figure 7 - RxMER Heatmap for a device with an unknown impairment - 2 

3. Training Data/Labeling UI 
Generating labeled data for supervised machine learning is a labor-intensive activity that requires subject 
matter experts (SMEs) to carefully examine and classify impairments. To generate a larger population of 
labeled data, we employed a hybrid approach. We, as data scientists, labeled the easier-to-classify 
samples, while the more challenging samples were assigned to field technicians and other SMEs for 
classification. 

To help capture impairments, and given that a majority of RxMER samples do not have impairments, the 
sampling strategy focused on capturing samples with high variance over OFDM subcarriers. In addition, 
rule-based methods were utilized to identify potential VHF, Analog Modulation, and RFoG impairments, 
which underwent further validation before inclusion in the labeled dataset. 

We developed a custom UI tool for gathering labeled data from SMEs. In addition to the impairments, the 
pattern locations in the spectrum were also captured to support the model’s requirements. The locations 
refer primarily to the standard SC-QAM channels between 54MHz and 88MHz (channels 2 – 6). 

Each plot in the UI represents a single modulation error rate (MER) capture from a cable modem. The 
MER values are inverted over the y-axis to align the visual representation with internal noise monitoring 
tools that our experts are accustomed to reading. The example in Figure 8 illustrates the user experience 
in the labeling tool for an impaired device with VHF ingress located on channels 2, 4, and 6. Once a 
collection of samples has been labeled by experts, the collection can be added to the population of 
available training and validation data.  
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Figure 8 - Example of an MER plot in the labeling tool. The tool is used to both assign 

initial labels and conduct periodic reviews of the model’s predictions. 

We generated around 19.5k samples using the hybrid approach described above. Table 1 below shows the 
number of samples by impairment classification. 

Table 1 - Number of samples by impairment classification. Sample counts below 50 are 
not shown. 

Labels Sample Count 
Normal 7,733 
VHF - Channel2 1,446 
VHF - Channel2, VHF - Channel6 1,298 
Other 1,264 
VHF - Channel3 1,209 
VHF - Channel4 726 
VHF - Channel5 714 
VHF - Channel3, VHF - Channel5 489 
RFoG, VHF - Channel2, VHF - Channel6 461 
Analog Modulator - Channel 3 421 
VHF - Channel2, VHF - Channel6, Other 388 
VHF - Channel2, Other 341 
VHF - Channel3, VHF - Channel4, VHF - Channel6 333 
VHF - Channel2, VHF - Channel4, VHF - Channel6 326 
VHF - Channel4, VHF - Channel5, VHF - Channel6 288 
VHF - Channel6 218 
Analog Modulator - Channel 3, VHF - Channel2, VHF - Channel6 209 
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Analog Modulator - Channel 3, Other 171 
VHF - Channel2, VHF - Channel4 170 
RFoG 158 
Analog Modulator - Channel 4 147 
Analog Modulator - Channel 4, VHF - Channel2, VHF - Channel6 103 
VHF - Channel3, VHF - Channel4, VHF - Channel5, VHF - Channel6, Other 73 
VHF - Channel5, Analog Modulator - Channel 3 72 
VHF - Channel2, VHF - Channel4, VHF - Channel6, Other 70 
VHF - Channel4, VHF - Channel5 65 
Analog Modulator - Channel 4, VHF - Channel2, VHF - Channel4, VHF - Channel6 62 

 

4. Model Architecture 
Similar to our previous efforts to classify impairments in OFDM Channels [2] and SC-QAM Channels[3], 
the model architecture used to classify OFDMA impairments is a 1-D Convolutional Neural Network 
(CNN) which has the general architecture shown in Figure 9.  

 
Figure 9 - Convolutional Neural Network (CNN) Components 

CNNs typically have a series of convolutional and pooling layers that are stacked together. Each 
convolutional layer consists of several filters. As the data flows through the network, the learned features 
increase in complexity [4]. The convolutional layers are often followed by pooling layers which reduce 
the spatial dimensions of the data while preserving the most important features. Pooling helps to make the 
model more robust to variations in the input, and it also helps reduce the computational requirements. 

After the convolutional and pooling layers, CNNs usually include one or more fully connected layers. 
These take the learned features from the earlier layers to perform tasks such as classifications or 
predictions. 

In our specific use case, the input to the CNN consists of one-dimensional arrays composed of RxMER 
samples. Each sample represents a RxMER per mini-slot capture for a single device. The output from the 
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model for each input sample is an array containing the probabilistic predictions for each impairment 
category. 

We experimented with 1-D CNN architectures that had between 1-3 convolution blocks and 1-3 fully 
connected layers. A grid search was performed on the following hyper-parameters before selecting the 
final model. The results displayed only slight variations across numerous hyperparameter combinations, 
indicating that the size of the training data may have a more significant impact on performance than the 
specific parameters employed. 

Table 2 – Hyperparameters and Ranges evaluated during training. 
Hyperparameter Range Hyper-parameter  

Type 
Number of filters in convolutional 
layers 

[32, 64, 96, 128] Network Structure 
 

Kernel size in convolutional layers [3,5,7,9] Network Structure 
Pooling Size [2,3,4,5] Network Structure 

 
Fully connected hidden layer size [32, 64, 96, 128, 160] Network Structure 

 
Dropout [0.2, 0.25, 0.3, 0.4, 0.5] Network Structure 

 
L2 Regularization [0, 0.0001, 0.0005, 0.001, 0.005, 0.01] Network Structure 

 
Learning Rate 
 

[0.00005, 0.0001, 0.0003, 0.0005, 
0.001, 0.003, 0.005, 0.01, 0.03] 
 

Network Training 

Batch Size [16, 32, 64, 128, 256] 
 

Network Training 

 

5. Model Training/Performance 
Out of the ~19.5k labeled samples, ~90% were used for training and validation with the remaining ~10% 
used as a holdout dataset to estimate performance of the model in production. Initially, 5-fold cross-
validation was used, and validation/training loss was used to determine the hyperparameters that had the 
best performance. The top-performing model was then trained on the complete set of training and 
validation samples to yield the final model. 

The models were evaluated on receiver operating characteristic (ROC), precision, and recall during 
training as well as on the holdout dataset for the individual classes.  

ROC for all classes is very close to 1 during training as well as on the holdout dataset as seen in Figure 10 
and Figure 11. This indicates that the model can almost exactly distinguish between the positive and 
negative samples for each class. This is also reflected in the very high precision and recall values seen in 
Error! Reference source not found.  Figure 12 and Figure 13.  
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Figure 10 - Training/Validation ROC 

 
Figure 11 - Holdout ROC 
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Figure 12 - Training/Validation Confusion Matrix 

 

 
Figure 13 - Holdout Confusion Matrix 

These initial results are extremely promising. We believe that the effectiveness of the model stems from 
both the CNN-based architecture and the substantial number of training samples. 

We investigated the samples whose labels were predicted incorrectly by the model. A couple of examples 
of false negatives are shown in Figure 14 below. In both examples, multiple impairments exist, and the 
model did not predict the impairment highlighted in red. Note that ‘Other’ indicates the presence of an 
unknown impairment that the current model is not attempting the classify. In the first example, ‘VHF – 
Channel 4’ is not predicted by the model and it may be due to its severity being low. In the second 
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example, ‘VHF – Channel 2’ is not predicted by the model. We see that unclassified impairment(s) also 
exist in this example that interferes with the typical signature of a ‘VHF – Channel 2’ impairment. These 
missed classifications can usually benefit from additional training samples of the same genre. 

 
Figure 14 - False negative (FN) examples from the Holdout dataset 

A couple of examples of false positives are shown in Figure 15 below along with their original and 
predicted classifications. In the first example, the model predicts the existence of ‘VHF – Channel 2’ in 
addition to ‘Analog Modulator – Channel 3’. On closer inspection, some elements of a typical VHF 
signature are discernable in this example. In the second example, the sample was labeled with ‘Other’ due 
to the presence of unknown Suckouts that appear to occur periodically. One of the Suckouts is 
predominantly contained within Channel 4 that may have caused the model to predict it as ‘VHF – 
Channel 4’. 

 
Figure 15 - False positive (FP) examples from the Holdout dataset 

6. Machine Learning Operations 
A machine learning pipeline was developed using Apache Spark to scale the model for the entire footprint 
of OFDMA-enabled devices on our network. Each record of the source data is comprised of a single MER 
capture for a single cable modem, with each capture being comprised of 111 data points. Over the course 
of 24 hours, each modem’s MER is captured every 5 minutes for a total of 288 records per modem, per 
day. Processing each MER sample allows us to determine, with high confidence, how persistent or 
transient a pattern is manifested throughout the day. 
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As of this writing, the pipeline needs to be capable of processing over 800 million records daily to 
achieve the most comprehensive coverage. As such, the pipeline’s architecture was designed with 
horizontal-scaling capabilities in mind. Even at this volume, CPU-based compute machines are sufficient 
to process the data in a timely, cost-effective manner through a distributed compute cluster.  

 
Figure 16 - ML Ops workflows for scaling the model and monitoring performance. 

The other important workflow in MLOps is tracking model performance over time. We can understand 
performance by calculating the model’s precision for each of the pattern types. The standard precision 
calculation is expressed as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑁𝑁 𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃

 

To accomplish this, periodic reviews are completed on random samples of the model’s predictions on 
real-time data. The samples are loaded into the same labeling tool used to build the training data,and an 
expert manually reviews the model’s prediction alongside the plot of the MER. Samples with an incorrect 
prediction are flagged accordingly, and the results of the review are used to calculate the precision metric, 
along with other standard model metrics.  

From an operations perspective in this situation, any false positive detection could contribute to a 
technician being mistakenly dispatched to solve a non-existent problem. For this purpose, the precision 
metric is closely monitored over time and evaluated against a threshold. 

7. Conclusion   
We have so far seen excellent results in being able to identify impairments such as VHF, Analog 
Modulator and RFoG Ingress. As part of ML Ops, we’ll continue to monitor and validate the performance 
of the current model over time and take the necessary steps to ensure model performance remains 
optimal. 
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We believe that the model performance seen for known patterns will also translate to some of the 
unknown impairments seen in OFDMA once we are able to classify them and generate a sufficiently 
large, labeled dataset. 

We have made significant improvements to our impairment detection in the Downstream Single Carrier 
QAM (DS-SC-QAM) sections of the spectrum by incorporating Root Cause Analysis (RCA) algorithms. 
These algorithms utilize a graph representation of the network topology, allowing us to pinpoint the 
source of the impairment more accurately. Despite the phenomenon of Upstream (US) noise funneling, 
where impairments impact multiple devices on a node segment, the actual root cause might be attributed 
to a single subscriber or a specific network element. Identifying methods to determine the root cause of 
US impairments would greatly reduce Mean Time to Repair (MTTR). We are actively exploring various 
approaches to isolate upstream impairments and are open to insights and expertise from industry experts 
in this area. 

Abbreviations 
 

1-D one dimension 
CM cable modem 
CMTS cable modem termination system 
CNN convolutional neural network 
CPU central processing unit 
dB decibels 
D3.0 data over cable service interface specification 3.0 
D3.1 data over cable service interface specification 3.1 
DS downstream 
DS-SC-QAM downstream single carrier quadrature amplitude modulation 
FDX full duplex 
FN false negative 
FP false positive 
HFC hybrid fiber-coaxial 
MER modulation error rate 
ML machine learning 
MHz Megahertz 
ML Ops machine learning operations 
MTTR mean time to repair 
OFDM orthogonal frequency division multiplexing 
OFDMA orthogonal frequency division multiple access 
OSS operational support systems 
OTA over the air 
PMA profile management application 
PNM proactive network maintenance 
RCA root cause analysis 
RFoG radio frequency over glass 
RxMER receive modulation error ratio 
ROC receiver operating characteristic 
QAM quadrature amplitude modulation 
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SCTE Society of Cable Telecommunications Engineers 
SME subject matter expert 
SNR signal-to-noise ratio 
TN True Negative 
TV Television 
TP True Positive 
UI User Interface 
US Upstream 
VCR Video Cassette Recorder 
VHF Very High Frequency 
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