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1. Introduction 
Many books and articles have been written about artificial intelligence (AI) and machine learning (ML), in 
a variety of applications. ML is far from new, has an established theoretical foundation, and lots of different 
types of ML techniques have been introduced over the past decades. These techniques can be classified in 
different ways, but a full taxonomy is outside of the scope of this article. In this paper, we focus mostly on 
ML algorithms, as a subset of AI. Excellent introductions and overviews have been provided in e.g. 
[Goodfellow16, Bishop95]. 

Lots of successes have been claimed based on ML, and reports of AI intelligence are already the subject of 
ethical discussions [Google22]. Still, the powers of machine learning are not always a solution, and in many 
applications, even though they make for an interesting marketing statement, they do not lead to net gains 
or operational savings. 

Machine learning has powerful applications in computer vision, image and video processing, and 
approaches using deep neural networks have become the center of academic and industry research. For 
example, residual neural networks have shown impressive results for image classification and recognition 
[Simonyan14, He16]. Still in most of these cases, very complex algorithms are needed, requiring e.g. deep 
neural networks containing dozens or hundreds of layers. While it’s acceptable to have a very complex 
training stage (which needs to be executed once), it’s primarily the complexity of the inference network 
(which needs to be repeated many times) that determines the feasibility of ML approaches1. An important 
unit of expressing the complexity of ML inference networks is the number of multiply-accumulate 
operations (MACs). Some of the best-performing image recognition networks use millions of MACs per 
image. 

Often, new approaches are deemed feasible when they can be run on state-of-the-art GPUs inside a server. 
In certain cases, this is acceptable, and the cost of a dedicated CPU or GPU is warranted. For real-time, 
cost-sensitive applications, however, this is not an option. In typical video encoding/transcoding set-ups, 
dozens or even hundreds of channels need to be processed on a single server, and the cost per channel is a 
crucial criterion. Furthermore, the latency of offloading decisions to accelerators (if they would be cost 
effective, which is not the case), would be prohibitive. 

In this paper, we discuss the applicability of machine learning approaches in different areas of real-time 
video compression. We successively cover encoder complexity reduction, rate control, video quality 
improvements and video quality measurement. In each of these areas, we have studied ways to reduce the 
complexity of ML inference, to end up with algorithms that are applicable in real-time, cost-sensitive 
applications. 

 

 

1 While in this paper we’re mostly concerned with the complexity of the inference stage (which needs to 
be run every time a decision is made), the cost of training these networks can still become prohibitive in 
some cases. Not only the impact on computation, but also on emissions needs to be considered. In the 
field of natural language processing, Transformer Networks such as GPT-3 have been developed, with 
175 billion ML parameters, requiring tons of CO2e just for training. 
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2. Applying ML to video compression: from ML to TinyML 
In contrast to what our marketing departments would like us to believe, applying ML to any problem is not 
a trivial task, and it doesn’t work out-of-the-box. For any problem solved using ML, domain knowledge is 
required. In the case of video encoding, a lot of specialized knowledge about video compression and its 
components is essential. 

When attempting to combine the difficulties of domain knowledge, ML knowledge and complexity aspects, 
it is easy to get stuck in the “trough of disillusionment”, where little or no net benefits of ML are reaped. In 
the end, product-grade encoders are usually mature, with smart human-designed algorithms. And indeed, 
in several areas, the gains are not immediately spectacular. Still, by pushing through, it is possible to obtain 
productivity and operational gains.  

It is also tempting to assume that we can apply deep CNNs or similar computer-vision inspired techniques 
to video compression: detecting objects, humans, optical flow, or even apply a semantic meaning to each 
of these objects – after which we use that semantic information to help compression. While this is possible 
in theory, and a typical human reflex, such approaches are typically error-prone, inconsistent over time, and 
require a tremendous amount of computational resources. 

In this paper, we focus on ML approaches that are feasible in real-time, with minimal impact on “channel 
density”, i.e., the number of video channels that can be processed on a single server. As a result, these are 
realistic techniques that lead to operational savings and efficiency increases. 

As an analogy, the challenges encountered in ML-based video compression are similar to those in the 
research field of “Tiny ML” [Warden20] – even though we’re working on servers with multi-core CPUs. 
But instead of running single tasks on a very low-power platform (in the mW range), we process hundreds 
of video streams on a single CPU, making millions of decisions per second. To continue the analogy with 
TinyML, every individual building block inside an encoder has only milliwatts of power available. This 
results in an exciting new combination of research on low-complexity real-time ML inference for video 
compression. 

 

3. Video encoding complexity (reduction) 

3.1. A high-level view on encoding 

In this paper, we continue to focus on video encoding as application. Compressing and encoding video is 
an extremely complex process, comprising different steps including pre-analysis, mode decision, motion 
estimation, interpolation, intra/inter prediction, transform, quantization, entropy coding, in-loop deblocking 
etc. Executing each block is a time-consuming operation, but it’s mostly search space exploration (i.e. 
evaluating the different encoding options such as partitions and motion vectors) that is expensive in 
encoders. A simplified version of a hybrid block-based encoder is shown in Figure 1. 
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Figure 1. High-level overview of a hybrid block-based video encoder 

Video encoding not only demands a lot of CPU power, but also memory (bandwidth). With higher 
resolutions (e.g. 8K) and higher frame rates (e.g. 120 fps), billions of pixels need to be processed every 
second. For lower-resolution streams, typically dozens to even hundreds of streams can be processed in 
parallel on a single server.  

To cope with this complexity, lots of effort has been spent on developing hardware accelerators, FPGAs, 
ASICs and so forth. Still, encoding in software has many benefits, and brings maximum flexibility in 
deployment (on-prem, cloud-based etc), upgrades, and video quality improvements. For operational 
efficiency and flexibility, software encoding is often preferred, and will be the focus in this paper. 

 

3.2. Encoder complexity reduction 

To gain a competitive advantage, a low cost per channel is important. This is becoming increasingly 
challenging, as the complexity keeps increasing for newer compression formats. Each generation of video 
compression standards brings an increase in computational complexity (e.g. from MPEG-2 to AVC to 
HEVC), and newer standards are on the horizon (such as VVC). Typically, decoder complexity doubles 
with every generation, while jumps in encoder complexity can be even larger. 
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Figure 2. Evolution of video coding standards 

Not only the resolutions are increasing, also the number of different ways to encode each individual frame 
or block is going up. While HEVC had about 80K different ways to partition a 64x64 block, the biggest 
coding units in VVC (128x128) can be partitioned in more ways than there are atoms in the universe2. 

 
 

Figure 3. Example partitioning structure using VVC. 

Given the potential for optimizations in this huge search space, finding efficient ways to make decisions 
inside the encoder is a popular research topic, and recent attention has shifted towards machine learning 
approaches. Plenty of references in this direction can be found in academic literature. Typically, however, 
the reference point in these papers is (extremely slow) reference software, and most of these gains cannot 
be transferred as such when applied to professional, real-time encoders. 

Also, many publications on encoder complexity reduction focus on non-real-time (VOD-type) encoders. 
While this is useful as a starting point, those findings cannot be directly translated to real-time scenarios. 
Smart ‘production-grade’ encoders already make intelligent decisions, without exploring all options. In 
practical encoders, the promised complexity reductions are typically (way) lower. 

 
2 Every 128x128 coding unit can be split down to 4x4 coding units, with a recursive combination of binary, ternary 
or quaternary splits (or no split). I will leave the calculations up to the interested reader. 
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Still, interesting work in different directions has been performed resulting in ML networks with reasonable 
complexity, always while trying to limit the loss in compression efficiency: 
- Partitioning for HEVC and VVC. [Liu16] presented a CNN-based CU partition size decision for HEVC 

with a reasonable complexity of 3,000 MACs, along with a hardware implementation. Among others, 
[Bhat21], [Wu21] and [Liu22] introduced CNN-based or SVM-based strategies for acceleration of 
VVC encoding, with a focus on the partitioning decisions, with encoding time reduction of roughly 30-
80%, while limiting the impact on compression efficiency. 

- Intra prediction. The work by [Santamaria20] presents NN-based intra prediction modes along with 
simplifications that lead to multiplications in the order of 100s up to 10,000s for 16x16 blocks. This 
builds on the work of [Pfaff18], and an interpretation analysis is run to come to simpler, explainable 
predictors that are easy to implement. The result is NN-based modes that are much closer to real-life 
usage.  

- Inter Prediction. Although much of the recent work has focused on NNs, other ML techniques such as 
Decision Trees prove to be efficient ways to optimize encoder decisions, as in [Kim19], where inter 
prediction is accelerated for AV1. 

- Transform selection. The transform search for AV1 is accelerated in [Su19], based on a neural network 
with one hidden layer. For transform kernel prediction, two shallow networks are used which are 
combined into a score for the 2D transform. 

The message from these papers, along with our findings, are that fairly simple and shallow neural networks 
can produce accurate results, and at acceptable computational complexity. 

 

3.3. Reducing the complexity of ML inference networks 

Optimization techniques can help push the boundaries of what ML can achieve inside an encoder, and can 
help limit the cost of deeper networks. For example, pruning can be used to reduce the complexity of the 
networks, and to eliminate redundant MACs in the inference networks. Also, quantization allows to reduce 
the bit depth of operations, at the possible cost of some accuracy in calculations. 

Specialized hardware accelerators can be tolerated in some applications, but might lead to a large overhead 
in latency, limiting their feasibility. Dedicated instruction sets (such as VNNI) provide a more convenient 
way to parallelize operations, and specialized matrix multiplication instructions are made available on the 
most recent CPU generations. Unfortunately, offloading ML inference to external accelerators or GPUs is 
usually not preferred, and would lead to unacceptable latency in the real-time applications we’re discussing 
in this paper. 

In all cases, a trade-off between accuracy and complexity needs to be found – again, domain knowledge is 
needed to find a good balance. That domain knowledge is also essential for the most important part, which 
is intelligent network design: shallow network and intelligent feature design.  
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4. Rate control 
Rate control is another area where ML has proven to provide improvements. Video encoding can be 
considered as a resource allocation problem. Given a certain bit rate (=bit budget), the available bits need 
to be distributed in the best possible way across different frames and coding units, to reach the highest 
possible video quality. This is done by choosing the right quantizer (quantization parameter) for each block. 

While this seems a fairly trivial task, it is actually an extremely difficult problem, given the multitude of 
options that every individual block can be encoded with. Furthermore, due to prediction, blocks are 
dependent on previously encoded blocks, further exploding the complexity of the problem. The power of 
its rate control algorithm is actually one of the biggest differentiators in the quality of an encoder. 

In practical encoders, estimations are made to allocate quantizers to every block based on pre-analysis of 
the video content. Each block will be encoded with an estimated quantization parameter (QP), and the total 
bit rate for the frame needs to approximate the given bit budget as closely as possible. This pre-analysis and 
prediction stage is essential, and the prediction error needs to be as small as possible. The rate control 
process is depicted in Figure 4. 

 
 

Figure 4. Simplified view on traditional rate-controlled encoding 

Traditionally, prediction algorithms are based on human-designed heuristics, tweaking and testing. While 
this works well in general, there are cases where misprediction leads to fairly large bit estimation errors. 
This can lead to the rate controller over- or under-allocating bits for a number of frames. As a result, bits 
might be wasted, or quality might suddenly drop. 

With machine learning, smart features can be calculated during the pre-analysis stage. With the resulting 
ML-based rate controller (Figure 5), we’ve noticed better resilience to a variety of content types, including 
sudden content or scene changes. As a result, we achieve better correlation between estimated and encoded 
bits, as illustrated in Figure 6. 

 
 

Figure 5. ML-based rate control 
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Figure 6. Improvement in rate control prediction accuracy between traditional (left) and 
ML-based (right) rate control. 

 

5. Subjective improvements 
Reaching a high level of video quality is extremely important when offering premium video content. Over 
the past decades, major steps forward have been made, going from analog TV to HD digital TV, and now 
it is common to watch premium sports in UHD, with the first 8K channels becoming available. In any case, 
we’ve come a long way since analog or DVD-level quality, and viewers are getting used to high-quality 
and ultra-high-definition video, by watching popular VOD services. 

Pushing the limits in video quality is important to offer a premium to viewers, and as a differentiator when 
selling video encoding services. When comparing encoders (in so-called shoot-outs), offering the best 
quality is one of the most important criteria. In the next section, we will discuss VQ measurement based on 
objective metrics (as calculated by algorithms). But in this section, the focus is on subjective quality, as 
perceived by the viewer.  

Several elements are important to optimize the visual quality as perceived by viewer. In early videos 
circulating on the Internet, digital video was suffering heavily from blocking artifacts, blurring, mosquito 
noise, ringing etc. These are quality artifacts that should be avoided at all costs, and that are no longer 
acceptable (and fortunately, less common) in modern video distribution. 

In recent years, per-title, content-aware (CA), or even shot-based encoding have become mainstream. 
Introduced by Netflix [Aaron15], CA encoding finds the best bitrate (or settings) for every segment or shot. 
Content-adaptive encoding can help boost the quality of every segment of a video sequence. In a “black-
box” version, a wide range of settings can be determined and fed into an ML framework, e.g. as 
demonstrated by Facebook in [Coward16]. 

While these techniques were introduced for VOD-type encoders, and operating at a very high complexity 
(e.g. by evaluating multiple options before deciding on the final encoder settings), they can also be applied 
to real-time encoders. In this case, decisions need to be taken much faster, with low latency and limited 
lookahead, and before the entire shot is available.  



  

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 10 

Smart bit distribution inside encoders can make a substantial difference in video encoders, and is necessary 
to preserve detail in the right places (e.g. players on a football field, or the football itself), to reduce artifacts 
and preserve textures. ML is well-suited to make decisions in real-time, and with a high degree of content 
adaptivity. Coding tools such as adaptive quantization, sample adaptive offset (SAO) filtering in HEVC or 
VVC, ALF in VVC, are excellent candidates for smart decision making based on ML. Some examples of 
improvements that were obtained by moving from handcrafted algorithms to ML-based subjective decisions 
are shown in Figure 7. 

 

 
Figure 7. Example quality improvement between traditional (left) and ML-based (right) 

texture preservation. 

For detection of areas of importance, ML algorithms can be used for higher accuracy. For example logos, 
faces, football players etc can be better detected and protected in sports games. 

 
Figure 8. ML-based logo detection 
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Also filtering and post-processing are excellent candidates for smart ML-based techniques. Several articles 
have been published in this direction, such as in [Yang17] and [Kuanar18]. Also deinterlacing can benefit 
from CNNs, as described in [Bernasconi20], by combining residual and dense neural networks. 

 

6. Video quality measurement 
To verify the effectiveness of VQ optimizations, a great deal of time needs to be spent on subjective quality 
assessment. This is a process in which viewers (experts and/or non-experts) provide feedback on the video 
quality. Subjective test methodologies have been designed and standardized to handle this process. And 
every codec development team will have a set of ‘golden eyes’ in house to guide this process. 

In practice, it’s not feasible to verify the subjective quality of each and every video stream or channel, and 
subjective quality assessment is typically used only in specific occasions, e.g. during encoder comparisons, 
during the set-up or configuration of an encoder – or whenever an issue occurs. To reduce the high cost of 
human intervention, objective quality measurements have been introduced, to assist VQ measurement in an 
automated way, and as accurately as possible. 

Objective VQ measurement is useful in applications such as encoder comparison and configuration, bitrate 
selection, ABR ladder (resolution, bitrate) optimization, real-time VQ measurement and monitoring, and 
in-loop quality control. 

Different types of objective VQ measurement exist. In cases where the source video is available, a Full-
Reference (FR) VQ comparison is possible (Figure 9). Examples of such metrics are MSE (mean squared 
error) or PSNR (peak signal-to-noise ratio), which calculate the difference between original and distorted 
pixels.  

 

 
 

Figure 9. Full-reference video quality assessment 

In other cases, a more difficult task is to evaluate the VQ without reference to the original (NR, no-
reference). Here, indicators of e.g. the naturalness of images need to be calculated to get an impression of 
the overall quality. While NR metrics are extremely useful, the absence of a reference point makes NR 
scores less accurate. Inside the encoder, the encoded video can be compared to its input, and FR metrics 
can be used. We revisit NR metrics later on in the context of quality monitoring. 

A multitude of FR metrics have been introduced over the past decades, including PSNR (peak signal-to-
noise ratio), SSIM (structural similarity), MS-SSIM (multiscale SSIM), VMAF (video multimethod 
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assessment fusion) and others. The more complex metrics (such as MS-SSIM and VMAF) have shown to 
provide higher accuracy, while simple metrics like PSNR are not reliable enough for most purposes. 

Machine learning has started to play a big role in VQ assessment and the creation of new metrics. An 
excellent example of an ML-trained metric is VMAF, which takes into account compression and scaling 
artifacts, and reaches a high accuracy on a variety of test sets. It is being used by many companies and is 
on its way to become a de facto industry standard. VMAF was trained on subjective data collected from 
human viewers, and uses a combination of underlying metrics as features. These features are weighted 
using SVM-based regression, resulting in a score between 0-100 to output the overall quality of the frames. 

 

6.1. From offline to real-time VQ measurement: tracking video quality 

A first obvious step to reach operational efficiency is to select the most efficient encoder and encoding 
configuration. Comparing encoders can be tedious, in particular when many different bitrates and 
parameters can be configured. Objective metrics can help identify the strengths and weaknesses of 
encoders, and can point to difference in encoder behavior over time or for different types of video content. 
Still, the question remains how the encoder will continue to perform, when an upgrade is applied, or when 
changes in configurations are made. Repeating extensive testing every time is an expensive and time-
consuming task. Real-time VQ measurement is the preferred approach to track video quality over time. 

As discussed above, ML metrics such as VMAF have been developed that work well for off-line 
measurement. For real-time measurement, however, we need metrics that are both accurate and affordable 
(meaning fast enough). VMAF’s main downside is its computational complexity. Although efforts are 
ongoing to reduce the complexity of VMAF, its computational requirements remain high, especially when 
looking at the operational cost.  

For operationally feasible VQ measurement, the cost of calculating VQ metrics needs to be reduced by 
several orders of magnitude compared to VMAF, and should be a fraction of the cost of the encoding itself. 
While simpler metrics like PSNR are often embedded inside encoders (as in Figure 10), they are not reliable 
enough for accurate VQ tracking. 

 
 

Figure 10. Calculating VQ inside the encoder 

Machine learning provides ways to calculate VQ metrics in a smarter way. Deep video quality metrics such 
as DeepVQA have been proposed [Kim18], or using dynamic receptive fields and CNNs [Kim20], which 
provide state-of-the-art correlation with subjective scores. Still, they require multiple convolutional layers 
to reach the final score, and as a result, a high computational cost. As an alternative, smart features can be 
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calculated inside the encoder (or even reused from the pre-analysis stage inside the encoder), as a more 
powerful input to ML networks. This process is illustrated in Figure 11.  

 
 

Figure 11. ML-based VQ measurement inside the encoder, based on pre-analysis 
features. 

Finding a balance between input features, network structure, network complexity and accuracy is a 
complicated process, which as mentioned before, requires a lot of domain knowledge. We have identified 
ML networks that have more than 90% correlation with subjective scores, and that provide a fast and 
reliable alternative to expensive VMAF calculation. Example ML networks are shown in Figure 12, where 
we started from the network on the left, but were able to reduce the number of MACs by 70% to reach the 
same accuracy with network on the right. 

 
 

Figure 12. Example networks used for ML-based VQ prediction. 

Once a VQ metric with acceptable accuracy and complexity is available in the encoder, it becomes possible 
to track video quality, and to verify 24/7 that a certain quality level is reached during encoding. 

 

6.2. From rate control to quality control 

Measuring video quality is one part of reaching efficient compression. An even bigger challenge is to 
actively control the VQ in real-time. In video compression, it is essential to reach a high video quality. But 
at the same time, for operational efficiency, you want to avoid overspending bits where they don’t matter. 
At a certain point, bits can be added, but visual quality will no longer improve. This leads to waste, higher-
than-necessary-bitrate, and delivery networks that are overloaded with redundant bits. Accurate video 
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quality metrics can help determine the saturation point and improve the intelligence of encoders. Figure 13 
shows an example rate-distortion plot where the saturation effect is visible.  

 
Figure 13. Above a certain bitrate, adding more bits will no longer (or hardly) improve 

quality 

In the end, more important than constant bit rate, is to reach consistent quality. Note that constant quality 
is not feasible in practice. In all practical encoder systems, there is a maximum bitrate (cap rate) constraint, 
which will limit the allocation of bits. In case of very difficult scenes, quality might be limited because of 
that cap. Still, on average, in-loop quality steering will lead to less overspending (wasted bits) and less 
underspending (quality drops). 

On top of VQ measurement, quality control poses an even more challenging problem, as VQ needs to be 
predicted before encoding. As a result, you end up with a chicken-and-egg problem. Fortunately, ML turns 
out to enable accurate prediction of encoded VQ, even before encoding. In this way, rate control can be 
turned into quality control. The result is a VBR stream which not only reaches a consistent quality, but also 
saves bits compared to traditional CBR rate control. Figure 14 shows how the different components fit 
together: ML-based rate control and VQ measurement, working alongside the ML-optimized video 
encoder. 

 

 
 

Figure 14. Quality-controlled compression 
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Figure 15 shows how quality-controlled compression can accurately reach a targeted quality value (in this 
case VMAF=90). Some variation is possible, and acceptable, when sudden changes in content occur, or 
when bitrate caps are reached. 

 

 
Figure 15. Result of quality-controlled compression (target VMAF=90). 

 

Quality-controlled compression can be extended across multiple streams, e.g. in statistical multiplexing 
scenarios. Even though statmuxed streams are inherently VBR in nature, traditionally they have not been 
optimized with a particular VQ in mind. By using quality control, target quality levels can be specified for 
each individual stream in a statmux bundle, while still satisfying the total constant bit rate. 

Also, adaptive bitrate (ABR) encoding can benefit – not only while optimizing individual streams, but also 
across the whole ladder. Instead of statically defining an ABR ladder as fixed resolution/bitrate pairs, it 
becomes possible to define quality targets for bitrate ladders, avoiding the need to specify fixed bitrates or 
even resolutions. 

 

7. Video quality monitoring  
One step beyond video quality tracking is VQ monitoring. Automated monitoring reduces the need for 
human inspection to keep track of video quality, with the objective of detecting issues with input sources, 
transcoding, delivery, or unexpected quality loss. This is another area where machine learning can provide 
clear benefits. 

While VQ measurement as described in the previous section can give a good view of the quality loss 
introduced by encoding or transcoding itself (by comparing output and input), it does not provide a view of 
the absolute quality of the signal, or whether a potential problem might have occurred. If a disrupted signal 
enters the transcoder, the FR metric might still report high output quality. Basically, garbage in leads to 
garbage out…  
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To allow more flexibility in monitoring, no-reference (NR) metrics are essential since they give an 
impression of the overall video quality. In recent years, NR VQ assessment has been a hot research topic, 
with successful introduction of new metrics, often using deep neural networks, such as: 

- [You19] proposed 3D-CNN and LSTM networks to extract local spatiotemporal features from 
small cubic video clips. 

- [Bosse17] presented a deep neural network approaches with 10 convolutional layers and 5 pooling 
layers, and 2 fully connected layers for regression, totaling 5.2 million trainable parameters. 

- [Bianco18] discusses different design choices for CNN-based blind image quality assessment, 
where the best design reaches a correlation of 0.91 with subjective scores. 

For a good overall impression of quality, a combination of metrics (or indicators) is recommended. In the 
Video Quality Experts Group, studies have been made of different NR metrics. One of the higher-accuracy 
metrics is Sawatch (v3) [vqeg22], which combines multiple underlying quality indicators to detect e.g. 
blurriness, blockiness, saturation levels etc. 

Still, even the more complex NR metrics reach relatively low accuracies when compared to FR metrics. 
Also, when quality issues occur, they are more prone to false positives or false negatives when compared 
to full-reference comparison. For more reliable VQ monitoring, measurements can be taken in different 
places during delivery, and their results correlated in a central point (e.g. in a cloud service). This provides 
a reliable comparison point for VQ degradation, transcoding artifacts, or simply transmission errors. 
Whenever a problem occurs, captures taken from the devices can be uploaded for deeper inspection. Only 
in those cases, human intervention is needed. 

By combining FR and NR metrics, different monitoring scenarios become possible, such as: 
- Observing quality fluctuations at a single point in the delivery chain. For example, quality 

measurements can be taken inside an encoder or transcoder and monitored over time. For this use 
case, either FR metrics (comparing encoded output to its input, Figure 16(a)) or NR metrics 
(without comparison to a source, Figure 16(b)) can be used. 

- Comparing measurements taken in multiple points in the video delivery chain (Figure 16(c)). For 
example in video transport cases, or in multiple processing steps, metrics can be calculated to track 
the evolution of quality in the delivery chain. 

 
Figure 16. FR and NR quality measurement for VQ monitoring. 
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By combining these different measurement capabilities, monitoring across the whole delivery chain 
becomes possible, from contribution encoding to end delivery, as illustrated in Figure 17.  

 
Figure 17. VQ monitoring at different points in the video delivery chain. 

 

8. Conclusions 
In this paper, we discussed several areas in video coding where machine learning has shown to provide 
benefits, including computational complexity reduction, rate control, and subjective video quality 
improvement. In contrast to popular deep neural networks for image recognition and classification tasks, 
less complex networks are needed in real-time scenarios, resembling the field of “TinyML”. Relatively 
shallow ML networks are both computationally acceptable and have been shown to lead to improvements. 

The field of VQ measurement benefits from ML approaches, both for non-real-time (such as VMAF) and 
real-time metrics that can be embedded inside encoders. For VQ monitoring, the combination of FR and 
NR metrics can be used to analyze quality across the end-to-end delivery chain. By bringing together the 
ML optimizations for rate control, subjective improvements and VQ measurement, quality-controlled 
compression can be achieved. 
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Abbreviations 
 

ABR adaptive bit rate 
AI artificial intelligence 
AVC Advanced Video Coding 
CBR constant bit rate 
CNN convolutional neural network 
DNN deep neural network 
DPB decoded picture buffer 
FR full-reference 
HD high definition 
HEVC High Efficiency Video Coding 
LSTM long short-term memory 
MAC multiply-accumulate 
ML machine learning 
MPEG Moving Picture Experts Group 
MSE mean squared error 
NN neural network 
NR no-reference 
PSNR peak signal-to-noise ratio 
QP quantization parameter 
SD standard definition 
SSIM structural similarity 
SVM support vector machine 
VBR variable bit rate 
VQ video quality 
VMAF video multimethod assessment fusion 
VNNI vector neural network instructions 
VOD video on demand 
VVC Versatile Video Coding 
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