
MERGING CONSUMPTION DATA FROM MULTIPLE SOURCES TO QUANTIFY
USER LIKING AND WATCHING BEHAVIOURS

 Sashikumar Venkataraman, Craig Carmichael

 Rovi Corporation

 Abstract

 We describe an integrated platform that
aggregates consumption data from multiple
sources towards building a unified model for
collaborative filtering for more accurate user
and content representations. The goal is to
provide a framework that combines various
signals spanning explicit ratings, implicit
information of watching behaviors and meta-
content information in a single model that
potentially goes beyond the usual goal of
maximizing consumption and incorporates
metrics that capture “likeness” and
“discovery”. We also feed the usage data
back into meta-content to determine more
accurate content representations that aid in
targeting content-based recommendations
more effectively.

INTRODUCTION

 Recommendation systems are becoming an
increasingly key component in many media
and entertainment content retrieval systems by
providing a powerful, efficient method for
users to easily sift through large catalogs of
media content and finding valuable
programming [1-3]. Within the last couple of
decades, several algorithms have been
developed that leverage metadata, such as
information on programs, casts and genres,
and user consumption data to provide users
with more targeted content recommendations
through these recommendation systems [4-5].
However, in most systems, much of the
viewership data is typically implicit in nature,
and models that are based on over-simplified
estimations of viewing behavior are often not
wholly comprehensive and intuitive. A user is

further predisposed to watch certain shows
and channels often based on pure habit,
content they are already aware of, or the sheer
popularity of a show, and these aspects are
usually unaccounted in the recall score of a
recommender system.

 In this paper we discuss a unified
framework that aggregates consumption data
from multiple sources and fuses them with
meta-content to create an efficient
recommendations framework capable of both
significant discovery and high precision. First,
we begin with the cold start problem where no
consumption data is available, and create a
baseline recommendation model that applies
word-to-vector [6] factors solely from
metadata content. An aggregation process is
used to accumulate these word-level vectors
to content level factors for each show and
channel potentially consumed. Next, we
derive the usage factors for each media asset
considering both explicit and implicit ratings
from various sources. While the explicit
ratings provide a more direct notion of
"likeness", the implicit signals only provide a
measure of watching behavior. We discuss
methods to correlate these notions of likeness
and watching attributes in a more formal way.

 A central part of the framework for
merging consumption data from multiple
sources is the Rovi Knowledge Graph that
incorporates factual information of all
‘known’ or ‘named’ things. This includes all
movies and TV shows, music albums and
songs, as well as all known people such as
actors, musicians, celebrities, music bands,
known companies and businesses, places,
sports teams, tournaments and players, etc.
All the facts pertaining to these entities are
synthesized from multiple publicly available

2016 Spring Technical Forum Proceedings

sources such as Wikipedia, Freebase, and
many others and correlated so as to create a
unique smart tag (with a unique identifier) to
represent each entity in the Rovi Knowledge
Graph. The main utility of the knowledge
graph for our problem is in aiding to merge
information across different data sources. We
have a merge system that can take any data
source and does a best-effort to merge the
entities in that data source with the underlying
knowledge graph. Such a system makes the
aggregation easier since different data sources
have variations in referring to entities and
carry different level of meta-information.

 One often encounters rich meta-content
associated with media assets, such as genre,
keywords, and description. However, the
relevance or weight of each individual piece
of meta-content (for finding similar movies or
recommendations) is often lacking, missing or
wrong due to multiple sources, algorithms,
and/or manual entry. For example, a show is a
comedy but exactly how funny and how it
impacts other comedies is more of a viewing
sentiment. Usage data, on the other hand,
provides a different kind of information in
conveying what programs co-occur in
watching behavior across users. Analysis of
usage data involves very different techniques
and algorithms from those for analyzing meta-
content. There has been some effort in the
context of recommendations wherein one uses
meta-content to filter in the post-process of
the collaborative filtering algorithm or mixes
results coming from collaborative filtering
and meta-content algorithms. However, no
prior efforts make use of usage data to better
understand metadata relevance and enrich
meta-content directly. It would be desirable if
usage data along with the implicit/explicit
ratings of users could be leveraged to
determine the relevant weights of different
pieces of meta-content.

OVERALL ARCHITECTURE

 We begin by describing the key steps
involved in merging deep and dynamic
metadata with usage data across various data
sources. These steps are described in brief
below and will be discussed in further detail
in the following sections.

Step 1: We first merge the assets from the
data source into the central knowledge graph,
to enable infusing of usage and meta-
information to and from the knowledge graph.
This step serves a dual purpose. Firstly, it
helps in augmenting the meta-content of the
assets in terms of keywords, genres and deep-
descriptors from the knowledge graph and
hence aids in getting more accurate factors
derived from meta-content representations.
Secondly, it aids in merging the usage factors
from this data source with usage factors from
other data-sources that are also merged with
the central knowledge graph.

Step 2: Using word-representations, we next
determine the meta-content factors
corresponding to the media-assets for cold-
start baseline with no or minimal usage data.
The word2vec model developed in [1] is used
to determine the word-representations
corresponding to each of the meta-content
information and these are aggregated to form
a vector for each asset in K-dimensional
vector space.

Step 3: Next, we build a model that merges
implicit and explicit information from
multiple data sources and fuse them into the
meta-content factors to create more accurate
asset representation. This naturally results in a
model to estimate “likeness” from user-
watching behavior even in absence of explicit
information.

Step 4: Finally we feed the usage data back
into meta-content in the form of coefficient
weights of each individual meta-content factor
involved in each asset. This enables the

2016 Spring Technical Forum Proceedings

creation of more accurate representation of the
individual meta-content factors that further
increase the precision in content-based
recommendations.

MERGING INTO KNOWLEDGE GRAPH

 The Rovi Knowledge Graph is a dynamic
system that has been created by synthesizing
multiple metadata sources and evolving and
refreshed continuously over time. Each smart
tag in the Knowledge Graph has rich meta-
content built by a combination of manual
tagging and automatic aggregation from
multiple sources along with several machine-
learning algorithms.

Fig 1: Merging of assets from multiple data sources

into a central knowledge graph

 Fig 1 below shows the merging of
information from various sources into the
central knowledge graph. While certain meta-
content fields, such as cast-members, roles,
and release year are unambiguous, while other
fields such as genres and keywords are more
subjective. These fields are assigned using a
combination of manual tagging and automatic
aggregation from multiple sites like
Wikipedia and Freebase. Genres can also be
assigned by tagging directly from keywords
gleaned from descriptions or plots. This is
done using machine-learning algorithms by
first determining the set of keywords

associated with a genre, using movies known
to have that genre, and then predicting them
on other movies that have a strong overlap in
keywords with the genre keywords.

 The core part of building the Knowledge
Graph is a “merge” function that takes in any
source and tries to map the entities in that
source with the entities in the existing graph.
Whenever a new entity, such as movie or
personality, is merged with an existing smart
tag, the metadata corresponding to the smart
tag gets augmented from the entity. If the new
entity does not get merged with any smart tag,
then a new smart tag is created for the entity
in the KG. An important aspect of the
merging is the allowance of slight variations
in the meta-content fields between the two
assets. For example, the titles can differ
slightly due to several reasons. One reason for
the difference in titles is the fact that some
sources put the season number and episode
numbers in the title, while other sources only
put the episode title in the title. Sometimes
they may differ due to some lexical error or
absence of common words like articles.
Release year could also vary by one or two
units, and sometimes cast members could be
be missing. All such variations are considered
during the merge process by considering all
the fields simultaneously and coming with a
combined match score considering all fields.
Following are 2 examples of approximate
matching with inexact titles which got
matched due to matching of other fields:

BUILDING WORD-REPRESENTATIONS

FROM META-DATA

 We now describe the step of determining
the baseline factors for the media-assets from
meta-content. These factors are especially
useful in cold-start situations with no or
minimal usage information. Over time the
usage information from multiple data sources
play a key role in how the asset factors
evolve; nonetheless the meta-content factors
remain valuable to bias recommendations

ESPN, NFL,
NBA,

Reuters,
CBS, NBC,
BBC,

WIKIS

REVIEWS

SPORTS

OTT

SOCIAL

NEWS

VOD +

Twitter,
Facebook,
Google Trends,
Nielsens, etc.

RottenTomatoes,
Metacritic, etc.

Wiki, Freebase,
TMDB, etc.

YouTube,
Amazon,
Hulu, Vudu.

Knowledge

Graph

2016 Spring Technical Forum Proceedings

towards more meta-content oriented discovery
without losing high precision. In our
collaborative filtering algorithm, we represent
meta-content information of each unique
media-asset as a weighted combination of
individual meta-content pieces, such as genre,
category, and keywords. Each individual
piece of meta-content can be represented as a
vector in a K-dimensional vector space (K is
usually 100-300). Each asset vector is then a
weighted sum of individual vectors and hence
also a vector in this space. The individual
vectors could have been determined
independently by other known algorithms
based on co-occurrences of terms in large
corpus (such as word2vec [6]).

 While a naïve algorithm in determining the
asset vector could be to just average over all
the vectors of keywords and genres, there are
several problems in this approach. Firstly, not
all keywords are of same importance and
some keywords may be noisy and unrelated to
the theme of the movie. Secondly, the genre
vectors are not readily available in the
word2vec model and needs to be explicitly
computed from the movies. To address the
first problem, we process the movie keywords
to form keyword clusters based on the
closeness of the keyword-vectors and then
filter those keywords that don’t fall in a
significant weighted cluster. For the second
problem, we treat a genre as a collection of
movies and hence cluster all the keywords
across all the movies belonging to that
category. The top keyword clusters found by
this clustering are then used to find the final
genre vectors. After we determine the
keyword and genre vectors, we can then find
the final asset vectors as a linear combination
of the corresponding keyword and genre
vectors. While these asset vectors are a good
starting point in our collaborative filtering
model, it may not be the most accurate
representation due to the lack of knowledge of
the genre and keyword cluster weighting
coefficients. We will discuss techniques to

optimally determine those weights in a later
section.

MULTI DATA-SOURCE
COLLABORATIVE FILTERING MODEL

 As mentioned earlier, one of the main
challenges in doing collaborative filtering is
the lack of explicit ratings in dealing with
usage data from many data sources. Most of
this usage data results from linear TV
watching behavior where the users are limited
in content choice and no explicit feedback is
provided that indicates how much the user
liked a particular show or movie. We also get
(to a lesser extent) usage data that involves
VOD (video on-demand). Though the signals
from VOD (and DVR) do provide a greater
correlation to user liking behavior, they too
are not as accurate as explicit ratings due to
the limitation in the number of media assets in
typical VOD catalogs. At best, they capture
the kinds of genres and categories that the
user typically watches, but fails to capture
more fine-grained likeness or dis-likeness
within a category. So the most valuable
information that we get is the usage data from
a couple of sources that involve explicit
ratings. However, the amount of this kind of
usage data is a lot less compared to the usage
data relating to linear TV and VOD. The
challenge then is to build a model that can
unify all these forms of usage data and
provide a model to carry over information
from data source to augment the usage factors
in another source.

 There are several models existing that
convert the ratings (explicit or implicit) to
similarities between media assets. These
include Pearson correlation coefficient, cosine
similarity, log-likelihood and jaccard
coefficient. Yet another interesting coefficient
is a notion of probabilistic similarity as
discussed in [7] referred as ProbSim in
sections below. During merging ratings from
multiple sources, the data sources explicit
ratings are given a higher weight than data

2016 Spring Technical Forum Proceedings

sources with implicit ratings. We also treat
VOD/DVR watching as a more explicit intent
and give higher weight to those data points.
The final result of merging all these forms of
usage data is a NxN similarity matrix where
each element (i, j) gives the similarity
between the items i and j. The similarity
matrix can either be created with only explicit
ratings (referred as XSim(i, j)) or implicit
ratings (referred as ISim(i, j)) or combining
both (referred just as Sim(i, j)).

 Our next step is to determine the factors
for the media-assets that most closely match
these similarities derived from the usage data.
The starting point for the asset vectors are the
factors determined in the previous section
from the word-representations corresponding
to the meta-content. The asset vectors are then
let to vary so as to match the usage
similarities as much as possible in an iterative
fashion. For every item-item pair, the
corresponding item factors are made to come
closer or away from each other based on how
much the cosine distance between the asset
vectors match the computed item-item
similarity. These final asset vectors represent
a more accurate representation that reflects
usage based similarity and simultaneously
remaining as close to the meta-content
representation as possible. Hence, these form
an ideal representation for hybrid
recommendations.

 We next use these similarities to create a
model to determine explicit user likeness from
implicit watching behavior. While explicit
ratings were unambiguously absorbed in the
similarity computation, implicit watching
were accompanied with several signals that
needed to be translated to some form of
implicit rating in a systematic fashion. Some
of the these signals include duration of
watching, number of times/episodes watched,
number of similar items user has watched
around that asset, the price the user paid for
watching, the average rating users have rated
that particular item in other data sources,

popularity of the asset, etc. The goal is then to
build a model that uses these signals and uses
a model to create an optimal expression for
“implied rating” or “likeness”. For this
purpose, we create a model that translates the
implicit ratings to similarities and then match
them with the similarities obtained from
explicit ratings. Figure 2 shows the model that
is used for this purpose.

Fig 2: Merging usage from multiple data sources

with explicit and implicit ratings

 In the above figure, we aggregate the raw
user event data in the first or bottommost
layer, L1. Examples of explicit indicators
include specific data that contain explicit
information such as ratings on the scale of 1-5
in increments of a half-star, or a like/not (0/1)
binary indicator. This would comprise an
explicit (input) vector Xui (d) . Example of

implicit indicators for user-item interaction
would include implicit watching signals such
as the ones described earlier. This would
comprise an implicit vector I. The next layer

I X

Error

X

e e e

2016 Spring Technical Forum Proceedings

L2 contains a mapping from consumption
details provided by L1 (both)(dIui

v
 and

)(dXui

v
) to the output to a form of preference

or likeness of a user u to item i, rui (d) in the

data source d. If the data set d involved is an
explicit one, the mapping is often
straightforward. However, for implicit data
sets, the mapping is more challenging and the
mapping would be in the form of a
(preference) model taking various forms

that ultimately depends on a set

of trainable weights W
v

. Different functions
can be used for various embodiments of fI

which represent trainable W
v

 in different
ways. For example, we can use a linear
estimator with a sigmoid function at the
output node, a general regression neural net, a
random forest, or various others.

 The predicted ratings are then passed to a
similarity layer L3, that takes the preference
detail estimates for each),,(diu across all
common media assets and users, and produces
a similarity estimate between media assets i
and j . While different kinds of similarities
(discussed earlier) can be used, we use
similarities based on a weighted Pearson
coefficient as mentioned below:

Sim(i, j, d) =
rui

X (d)− ri
X (d)() ruj

X (d)− rj
X (d)()

u∈(i, j)

U (d)

∑

rui
X (d)− ri

X (d)()2

u∈(i, j)

U (d)

∑ ruj
X (d)− rj

X (d)()2

u∈(i, j)

U (d)

∑

 It is assumed that whether similarities are
determined using implicit or explicit data,
they should roughly equate to the same values
per),(ji pair across multiple data sets. So
first we obtain an estimate XSim(i,j) based on
the usage data among data sources with
explicit ratings. This is then compared with
the data sources with implicit ratings and a
difference is then used in the final layer L4 to
compute the error between the two observed
similarities as shown below:

Error = XSim(i, j)− ISim(i, j, d)()2

j=1

N

∑
i=1

N

∑
d=1

Dimplicit

∑

 Then we can take the error, and propagate
it backwards, layer by layer until the
derivatives are estimated across the trainable
weights IW

v
. The iterations are performed

until the error is minimized to below a certain
threshold. We then use those weights as the
optimal coefficients to combine the implicit
signals and create an implicit rating.

FUSING USAGE INFORMATION INTO
META-CONTENT

 The collaborative filtering model used here
is referred as Weighted Vector Collaborative
Filtering (WVCF) where the meta-content
information of each media-asset is represented
as a weighted combination of individual meta-
content pieces, such as genre, category, and
keywords and each individual meta-content
piece is treated as a vector in a K-dimensional
vector space. A meta-content similarity of the
two assets is then modeled as a function of
these individual meta-content pieces of
information (such as a dot product). However,
the weight coefficients for each individual
piece of information are usually not known
apriori and our goal is to use usage
information to best predict these weights.
Once these weights are determined, we can
create more accurate item-item similarities
and thereby more accurate recommendations.

 Importantly, the WVCF baseline model
consisting of a single trained vector per asset
can be broken up into two finely tuned
predictors in the modeling pipeline, one that
targets aspects of watching (WVCF-watch),
and one that targets liking characteristics of
the user (WVCF-like). Later in the results
section is an example of recall performance
using Gradient Boosted Trees as a local
corrector to target both sides of precision
(liking) and recall (watching).

2016 Spring Technical Forum Proceedings

 As described in the previous section, the
usage information is separately modeled to
produce item-item similarity wherein items
watched together and similarly
evaluated/rated (common sentiment) across
multiple users have better usage-similarity.
This similarity also takes into account the
user’s sentiment along with viewing
information (i.e. both watched and similarly
liked/reviewed as opposed to only watched).
All similarities are in some sense based in part
on co-occurrence; usage-based similarity is
the co-occurrence of users watching the same
program, while meta-content similarity is the
co-occurrence of some meta-content (crew or
genre or keyword). The strength of co-
occurrence in the meta-content case is based
on the weights of the individual meta-content
information within that asset, while the
strength of co-occurrence in usage-based
similarity is governed by the user
sentiment/rating.

 The system then tries to align the media
asset vectors as close as possible to the usage-
based similarities. An error function is then
constructed that compares the modeled meta-
content similarity to the usage-based
similarity (based on co-occurrence combined
with sentiment factors).

E = sij − mij()
ij

∑ 2

where ijs denotes the observed “sentimental”

similarity between items i and j (as
determined from usage data discussed in
previous section) and ijm denotes the modeled

similarity based on the asset meta-content
vectors. The objective in this error
minimization is to explain the observed
sentimental similarities between many asset
pairs with a model that also has deeply
embedded metadata. The modeled similarity

ijm defined by the dot product of asset vectors

ia
v

 and ja
v

over all the latent factors:

 We next break down the asset vectors into
individual metadata components consisting of
keywords and genres:

aif = vi
genreswif

genres + vi
keywif

key

wif
genres = vg

genrewgf
genre

g∈i

genres in i

∑

wif

keywords = vk
keywordwkf

keyword

k∈i

keywords in i

∑

where wif denotes the total genre and keyword

factors, and vi denotes the corresponding

weights of those fields. The model continues
to extend so far as metadata is available.
Unknown components can also be added to
address when metadata is lacking or
unavailable. We then break down the genre
and keyword vectors further into factors
corresponding to individual genre and
keywords. Next we minimize the error
function using stochastic gradient descent that
changes the weights of the individual meta-
content components so that the net error
between the meta-content similarities and
usage-based similarities is minimized. After
iterating over all the usage data, the individual
meta-content weights are stored as the best
predictors for the corresponding meta-data
relevance for the media-asset.

RESULTS

 Table 1 below shows 10 examples of the
most similar shows based on the cosine
similarity between sentiment vectors prior to
training the model using only a small subset
of the terms in each aif . This is using only

raw source combined with weighted word
vectors without the use of metadata filtering
based on advanced tags, moods or deep
descriptors. So the starting point aif used for

training each media asset vector is already
capable of overcoming cold-start issues.

mij = aif ajf

f

∑

2016 Spring Technical Forum Proceedings

 Table 2 below and Figure 3 demonstrate
the trained accuracy of our model for various
number of meta-content factors. Recall@K
for various values of K was computed over a
VOD data set. Note the objective here was to
show that precision and recall can be
contained within a vector rather than a
similarity matrix without significant loss,
while holding metadata seamlessly across
usage spaces as vectored sub-components.
Further improvements are seen using WVCF-
watch and WVCF-like (beyond the vector).
With the vector, other training was based on
15K assets and 1 million users over the span
of a year. It appears little is lost in
performance when comparing the current
method to a purely usage based approach such
as ProbSim, which has proven to be a top
method in recommender systems space in
terms of precision/recall.

 Embedded into our model is the potential
to also normalize to a space that can be
consistent across multiple usage data sets. So
when recommending an asset that is either
completely new or not yet popular, this model
will tend to significantly outperform purely
usage-based approaches.

Table 1: Example most similar shows using meta-

content tags before training usage data

Model
Recall@K

K=5 K=10 K=25 K=50 K=100
Probsim 0.192 0.286 0.445 0.551 0.681
WVCF,

F=20 0.163 0.249 0.365 0.452 0.575
WVCF,

F=50 0.163 0.266 0.392 0.495 0.626
WVCF,
F=100 0.186 0.289 0.425 0.528 0.664

WVCF,
F=300 0.206 0.296 0.432 0.551 0.678

Table 2: Recall performance of WVCF vs Probsim

Fig 3: Recall performance of WVCF baseline vs
Probsim for various factors, prior to local affects

 The difference between WVCF and
ProbSim becomes more prominent when we
consider the “discovery” factor along with
recall precision. This factor is based on how
many overall programs of the corpus get
recommended in recall to a set of users. It has
been noted that models like ProbSim have an
extremely low diversity since most of the
recommendations are based from the top 1%
popular programs.

 Table 3 shows the top 15 programs from
the bottom quartile of the MovieLens (20M,
shows having less than 100 ratings discarded)
dataset using the total number of positive and
negative ratings and sorting by the ratio of
positive ratings to the total number of ratings.
While these “hidden gems” are virtually never
recommended by the ProbSim model, they do
have a high positive rating (though overall
number of ratings is small), and are therefore

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K=5 K=10 K=25 K=50 K=100

R
e

ca
ll@

K

Probsim

WVCF, F=20

WVCF, F=50

WVCF, F=100

WVCF, F=300

Title 1 Title 2
Top Chef Top Chef: Texas
Scooby-Doo! Pirates
Ahoy!

Scooby-Doo and the Alien
Invaders

28 Weeks Later Resident Evil: Apocalypse
Pirates of the
Caribbean: On
Stranger Tides

Pirates of the Caribbean: The
Curse of the Black Pearl

Kansas City SWAT Detroit SWAT

Stuart Little 2 Stuart Little

Modern Vampires Vampire in Brooklyn

Mad Max Death Race 2000
Godzilla vs.
Mechagodzilla II Terror of Mechagodzilla
Attack of the Killer
Tomatoes

Return of the Killer
Tomatoes

2016 Spring Technical Forum Proceedings

appropriate for more targeted user-
recommendations. This is versus at least 4%
hidden gem recommended for a modified
approach, and thus capable to have a better
spread in recommendations w.r.t. the
discovery of “long-tail” programs.

 Figure 4 shows the variation among users
in MovieLens [9] for their preference in
watching different grades of popular shows.
Recommender systems targeted to high recall
and high precision tend to overshoot for the
most popular shows (Q1) to score well on
recall (and precision automatically since there
are not many “2” or lower ratings for most
popular shows), while not discovering quality
shows at lower popularity.

Title(i) N(i)
Rating
Avg(i)

G(i)
+ve

rating

B(i)
-ve

rating
P(i) =

G(i)/N(i)
Intimate
Strangers 126 3.655 117 2 0.9832
Follow the
Fleet 118 3.712 111 2 0.9823
Ax, The
(couperet,
Le) 114 3.807 107 2 0.9817
One Man
Band 105 3.895 98 2 0.9800
Angels'
Share 105 3.710 96 2 0.9796
Queen of
Versailles,
The 144 3.628 137 3 0.9786
Yes Men
Fix the
World, The 194 3.843 179 4 0.9781
Big Clock,
The 162 3.756 153 4 0.9745
Hundred-
Foot
Journey,
The 156 3.750 143 4 0.9728
Short Film
About
Love, A 224 4.025 214 6 0.9727
Our Man in
Havana 153 3.748 142 4 0.9726
Pixar Story,
The 186 3.747 177 5 0.9725

Criss Cross 115 3.639 103 3 0.9717
Advise and
Consent 183 3.811 170 5 0.9714
Something
the Lord
Made 214 3.895 199 6 0.9707

Table 3: 15 Hidden Gems in the fourth quartile of
popularity in MovieLens

Fig 4: Popularity effect by quartile in MovieLens

 To address the above issue, we introduce a
penalty for not matching the user’s overall
popularity preferences over multiple bins
using a loss such as:

∑
=

−−=
Nbins

b

bupbuPuLOSS
1

),(),(1)(α

 Averaged over all u users, with 1=α and
10=binsN popularity bins, for example, the

new recall score is normalized to better match
user distribution)(uP

r

 with the recommended
distribution)(up

r
. This penalty reduces

Probsim’s recall score over MovieLens from
roughly 0.3 to 0.1, with Q4 hidden gems still
at nearly 0%. Furthermore, different shows
and movies have quite different popularity
characteristics across data sets, both explicit
and implicit. To this extent, recall scores
should be penalized even further to remove
arbitrary popularity artifacts associated with
each data set. Although the choice of α was
arbitrary in this case, without having a
“budget” to place recommendations into
popularity bins which fits known user
preferences, the model otherwise appears
lacking in diversity and drastically under-
recommends hidden gems, for the short-
sighted purpose of scoring high recall.

 If the model were tweaked for purely high
recall, where watching is predicted rather than
liking (to find hidden gems), Figure 5 below
shows example performance of WVCF-watch
along with liking and the combination of

0

0.2

0.4

0.6

0.8

1

Q1 Q2 Q3 Q4

Quartile

P
ro

b
ab

il
it

y
o

f
W

at
ch

in
g

Average User

userId=30236

userId=53971

userId=156

2016 Spring Technical Forum Proceedings

like/watch. Figure 6 shows the precision
equivalent. Here Gradient Boosted trees take
the baseline WVCF (vector only), one movie
at a time, and apply the baseline predictor as
an attribute for that movie. It then expands
the input deck to also include many attributes
in the surrounding neighborhood of ratings.
This produces a very strong estimator targeted
to watching. In this case, Figure 5 shows
SVD (F=100) versus Probsim versus WVCF-
watch for the (budgeted) popularity bin of the
top 25 most popular shows. Recall/Precision
points were tallied based on each user/item
sample in the cross validation being
somewhere in that bin (with the predictor
answering which movie was watched of the
25). The important thing here is that with
both WVCF-watch and WVCF-like, the
underlying recommender engine can control
effects such as the dial for liking and
watching, compared to other models with high
precision/recall that only provides a single
answer (both like and watch simultaneously).

 Table 4 below shows the results of
applying the 208 word emotions vocabulary
from [10] using pre-trained word vectors to
MovieLens usage within a modified SVD
framework. As these moods serve as
additional metadata, the experiment here
shows the power of Word Vectors fused into
the model. The training process tuned the
relevance of each vocabulary word vector to
each movie, within SVD latent movie factors,
to best model explicit likes. For top word
ranking, interesting patterns emerge between
overall, most popular, and gems. For example
“contrary” and “bored” is universally
important, “obnoxious” matters for most
popular, and “powerful” really applies to
gems.

Fig 5: MovieLens Recall@K for top 25 Most

Popular bin during “budgeted” recall

Fig 6: MovieLens Precision for top 25 Most Popular
bin during “budgeted” recall

Rank Overall Popular Gems

1 contrary lazy honest

2 angry inconsiderate contrary

3 brilliant pity cordial

4 wonder obnoxious powerful

5 bored annoyed lucky

6 insightful woeful wise

7 rough haughty aggressive

8 affectionate uncertain sad

9 weird alive nasty

10 folksy silly folksy

Table 4: Relevance of emotions/feeling/mood word
vectors trained over MovieLens usage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

K

R
ec

al
l@

K

SVD(F=100)

Probsim

WVCF-watch

WVCF-like

WVCF-like/watch

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0 2 4 6 8 10

K

P
re

ci
si

o
n

SVD(F=100)

Probsim

WVCF-watch

WVCF-like

WVCF-like/watch

2016 Spring Technical Forum Proceedings

CONCLUSION

 In this paper, we experiment with the idea
of providing powerful recommendations
ranging from discovery to high precision
across an arbitrary space of multimedia assets.
We discuss a unified framework that
aggregates consumption data from multiple
sources and fuses them with meta-content to
obtain more accurate content and user
representations. The explicit ratings are used
to convert the implicit watching user behavior
to a notion of "likeness" based on ground-
truth. The usage information is then used to
feedback into the meta-content to determine
more accurate weights of the individual meta-
content factors thereby enabling richer
content-content recommendations.

Methods within the unified framework were
applied to MovieLens data to frame some
common issues involved in the tradeoff
between discovery (of hidden gems) versus
recall/precision. Both watching WVCF-watch
and liking WVCF-like models provide further
flexibility to personalize recommendations.
By budgeting recall to within the same
popularity bins, hidden gems are not as likely
to be ignored due to a prediction of not
watching caused by a lack of awareness of the
(unpopular) show’s existence. Modifications
to scoring functions were discussed to better
personalize recommendations to best fit each
user’s watching preferences for maximal
viewing enjoyment. An example fusion of
word vectors to explicit ratings usage was
provided based on a specified vocabulary,
with patterns provided overall, for most
popular shows, and gems. This is
complementary to tag fusion, as in this case
each vocabulary word was universally applied
to each show.

There are several interesting directions in
which our research can continue in the future.
Care was taken to seamlessly convert all
available data spaces, including metadata, into
factored components, but integrated local

effects such as [8] as well temporal effects can
be better added. Even though the choice of
gradient boosted trees works well for WVCF-
watch and WVCF-like, other local correctors
and stacking may further be beneficial.
Another key issue is extensive data of explicit
ratings are usually not available in linear
content. Additional ways may exist, such as
latent factor and nearest neighbor
combinations, to close the gap between an
arbitrary notion of “liking” in implicit space
and explicit and/or ground truth. Another area
of research is to further formalize the notion
of “discovery” and relating it to likeness and
precision. Further modifications of recall
scores based on popularity biases between
data spaces may help also. It will be
interesting to see how this can then be used to
create a parameter knob that can be controlled
to either increase discovery vs. precision in
recommendations.

REFERENCES

[1] Gediminas Adomavicius, I. and I.
Alexander Tuzhilin, Toward the Next
Generation of Recommender Systems: A
Survey of the State-of-the-Art and Possible
Extensions. Knowledge and Data Engg, IEEE
Transactions, 2005. 17(6): p. 734-749.

[2] Melville, P. and V. Sindhwani,
Recommender Systems. Encyclopedia of
Machine Learning, 2010.

[3] Miller, B.N., et al., MovieLens unplugged:
experiences with an occasionally connected
recommender system, in Proceedings of the
8th international conference on Intelligent
user interfaces 2003: New York, NY.

[4] Su, X. and T.M. Khoshgoftaar, A survey
of collaborative filtering techniques.
Advances in Artificial Intelligence, 2009.

[5] Musto, C., Enhanced vector space models
for content-based recommender systems, in
Proceedings of the fourth ACM conference on
Recommender systems. 2010: Bari, Italy.

2016 Spring Technical Forum Proceedings

[6] Tomas Mikolov, Ilya Sutskever, Kai Chen,
Greg S Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and
phrases and their compositionality. In
Advances in Neural Information Processing
Systems 26, pages 3111–3119.

[7] O. Jojic, M. Shukla, N. Bhosarekar, A
Probabilistic Definition of Item Similarity,
Proceedings of the 2011 ACM Conference on
Recommender Systems, RecSys 2011,
Chicago, IL, USA, October 23-27, 2011.

[8] Y. Koren, “Factorization Meets the
Neighborhood: a Multifaceted Collaborative
Filtering Model”, Proc. 14th ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, 2008.

[9] GroupLens Research. Available from:
http://grouplens.org/datasets/movielens

[10] Vocabulary word list. Available from:
https://myvocabulary.com/word-list/emotions-
feelings-mood-vocabulary

2016 Spring Technical Forum Proceedings

