

LEVERAGING OPEN SOURCE BROWSERS TO OPTIMIZE APPS AND UI
PERFORMANCE ON SET-TOP BOXES

 Albert Dahan, Co-Founder and CTO, Metrological

Wouter van Boesschoten, VP of Technology and Innovation, Metrological

 Abstract

Embedded browsers present a host of
performance challenges for operators.
Today, the user experience of enhanced
browser-based services is largely dependent
on the performance of the browser itself.
Embedded browsers face set-top box (STB)
CPU power and memory limitations that
affect performance and fidelity. As consumer
demand for personalized OTT offerings
increase (Netflix, Hulu, etc) operators need a
browser experience that can support a
greater number of apps and the mechanisms
in place to search and discover the right apps
for each person.

HTML5 creates a standard, but it
doesn’t solve the issue of having to create a
uniform experience on every different device.
Operators need an in-house browser
supported by a framework that can run
cloud-based services consistently across all
devices. Using an open-source approach
enables operators to leverage the rapid
increase in innovations coming from
contributors to open-source browsing.

The solution is to adopt a browser
approach that leverages open-source
“WebKit for Wayland” (WPE) components.
This new software approach delivers high
performance rendering of HTML5 apps and
next-generation user interfaces, increasing
browser performance with a smaller software
footprint, and requires significantly less
memory usage. WPE components enable
robust rendering of cloud-based applications
and next-generation user interfaces and
provide better window management to
control multiple applications. Operators can

enable cloud-based apps to run on STBs with
the speed and consistency of native or local
apps while avoiding the costs normally
associated with proprietary based
approaches.

This paper will outline how to
implement an open sourced based approach
that enables high performance rendering of
HTML5 apps and user interfaces. It will
discuss the capabilities of the browser in
detail along with its pros and cons when
compared to other approaches and its ability
to integrate into the STB ecosystem.

BROWSER ORIGINS

In the early 90’s as the first building
blocks of the Internet became available there
was a need for a program to retrieve, traverse
and present information from internet
resources. This ultimately became what we
now refer to as an Internet browser. The first
widely adopted browser was the NCSA
Mosiac browser, which was later renamed to
Netscape in 1994. Microsoft responded with
Internet Explorer in 1995 and Opera
Software ASA responded with Opera version
2.0 in 1996. Apple’s Safari was first released
in 2003 however, the origins of WebKit go
all the way back to 1998, as part of the KDE
HTML Layout engine (KHTML) and KDE
JavaScript Engine (KJS). The WebKit project
was started within Apple in 2001 as a fork of
KHTML and KJS.

2016 Spring Technical Forum Proceedings

EVOLUTION OF WEBPAGES

In 1992 CERN launched the first
webpage under the HTML1.0 specification.
At the time, a webpage was nothing more
than text, static images and hyperlinks to
other resources. During the first wave of
browser launches the HTML specification
evolved at a high pace. Within a few years
HTML 2.0 (1995), HTML 3.2 with CSS1
(1996), and HTML 4.0 with CSS2 and
ECMAScript 1 (1997) were released by the
World Wide Web (W3) consortium.

With the general adoption of the

Internet, webpages became less static with
server side scripting executed through
technologies such as Common Gateway
Interface (CGI) and HyperText Preprocessor
(PHP).

The Asychronous JavaScript and

XML (AJAX) technology paved the road for

webpages to start changing from simply
offering static information to dynamically
providing the latest (server side generated)
information such as news and web portals.
This transition from static webpages to web-
applications meant that webpages could now
load dynamic data by making client
originated queries towards (other) Internet
resources; more data could now be loaded
from different resources without traversing
towards a new webpage. With the rise of
social media in the mid 2000’s websites
dynamically retrieved data and provided
(through plugins such as Flash) the ability to
playback various media. This in turn, allowed
users to share their videos, pictures and other
updates with one another through the
browser. Webpages were no longer static
single load and click to the next resource
applications, but interactive applications that
retrieved data and updated information as the
user stayed within that Internet resource.

 Figure 1: Evolution of website development over time

2016 Spring Technical Forum Proceedings

As mobile devices became popular in
the late 2000’s (ex: iOS, Android) the
concepts of responsive design and single
page Model-View-Controller web
applications became popular. Various
JavaScript frameworks provided the
developer with tooling to build full-blown
stateful graphical applications on the browser
platform.

As mobile devices began to struggle with

browser plugins such as Flash, Video Tag
was proposed and early drafts of HTML5 and
CSS3 started to emerge. Interestingly, the
drafts of HTML5 came almost along 10 years
after its predecessor (HTML4). While
browsers started to adopt portions of the
HTML5 specifications, social media
platforms were dominating the Internet.
Following the rise of social media, along
came the rise of online video streaming,
which provided further focus on the
browser’s capability to retrieve and render
video. With websites such as YouTube
serving millions of videos every day,
companies like Netflix, Amazon Prime
Video, Hulu started to get immensely

popular. This in turn drove the need for
adaptive streaming and common content
encryption capabilities in the browser.

Today’s websites, which are loaded by
browsers, are no longer web pages. Even the
term ‘web page’ seems to indicate something
static. These words depict something that
resembles a page in book or text in a
newspaper. Today’s web pages do not fit that
description at all. These web pages provide
user interaction, dynamically loaded
information (sometimes even real-time),
advertisements, two-way communication,
audio/video streaming and 3D graphics on a
platform that is uniform across multiple
devices. Interestingly, this application
environment isn’t controlled by a single
technology company. It is truly an open
platform where the community drives the
need for changes. Open source is leading the
way and the browser is by far the most
widely used application platform on the
Internet. The browser is no longer ‘a program
to retrieve, traverse and present information
from Internet resources’. It is a full
application environment.

Figure 2: Website complexity over time
2016 Spring Technical Forum Proceedings

EMBEDDED BROWSER

IMPLEMENTATIONS

Embedded devices have always been
a bit of a niche market for browsers. With the
rise of mobile devices there was no
unification on the browser and no massive
adoption of one or two browsers. Unlike the
desktop market, mobile users do not have a
‘preferred browser’. Historically, PC users
install their own browser on their desktop.
This is because at least initially operating
systems did not come with a latest and
greatest browser (i.e. Windows and Internet
explorer). Mobile devices, on the other hand,
are different. They are already bundled with a
browser from its respective company (e.g.
iOS comes with Safari, Android with
Chrome, etc.) and use the app store
mechanism to keep it up to date (an approach
later adopted by desktop environments).

For embedded devices that are not
running iOS, Android or Windows Mobile
there is not a lot of choice. There are a few
proprietary solutions available which require
a license, but often these proprietary
solutions struggle to keep up with the high
pace of new HTML5 specifications.

Through the Chromium project, the
Blink-based source code was available for
porting towards embedded devices. This
provides a Chrome-based browser for mobile
devices. However, Blink is built for a desktop
and requires desktop resources in terms of
available memory, Central Processing Unit
(CPU) and graphics power. It runs great on
expensive embedded hardware, but not all
embedded projects can afford 600 dollars’
worth of hardware.

For quite some time the only license free
solution was a WebKit port on top of the QT
application framework. With the introduction

of QT 5.4 this became increasingly harder
due to licensing changes by QT. Since QT
port isn’t maintained upstream, WebKit is
clearly the best choice due to its lightweight
nature and BSD v2/LGPL v2 licensing.
Being maintained by Apple, Adobe, KDE
(graphical desktop environment for UNIX
workstations) and others, the WebKit project
is sure to quickly adopt the latest W3
specifications for HTML5.1 and beyond. All
that was missing was a free and lightweight
graphics framework.

FUTURE TRENDS OF W3C AND THE
IMPACT ON EMBEDDED DEVICES

The shift from static web pages to an

application environment isn’t accidental. The
W3 consortium started its catch up with other
application environments with the start of the
HTML5 specification. The major highlights
in past iterations included video tag, drag and
drop, offline apps and Canvas. The new
HTML 5.1 specification enables media
source extensions, encrypted media
extensions, full screen Application Program
Interfaces (APIs), geolocation, Indexed
Database API (IndexedDB) and Web Audio
support.

However W3 isn’t stopping there. A
closer look at the task forces that are present
within the W3 reveals that they are planning
to add functionality for automotive, mobile
devices and TV and broadcasting. There are
already W3 drafts/proposals for functionality
such as screen orientation, lock screen for
mobile, reading metrics for cars and the
TVAPI for tuning and recording functionality
on broadcasting devices.

W3 is clearly going after these other
application environments and with the focus
on mobile, cars and TV, the need for an

2016 Spring Technical Forum Proceedings

embedded browser is much more important
than ever.

PERFORMANCE CHALLENGES OF

EMBEDDED BROWSERS

Anyone who has developed on
embedded devices will acknowledge that
performance is the Achilles’ heel of
embedded solutions. Embedded solutions
continuously balance hardware costs with
performance. Like all computer hardware, the
more expensive the hardware components the
more resources a software program will
likely have. The more resources a software
program can utilize the better the
performance, especially for graphical
applications.

Those who expect high-end
smartphone and gaming console performance
out of a 60 dollar device should think again.
The actual cost of a smartphone or gaming
console that can support cutting edge
graphics and high performance capabilities
would run almost tenfold of that in terms of
costs. The right balance can be hard to find.
If the manufacturing costs are too high, the
end consumer product will likely be too
expensive. A product with functionality that
is too limited, even with a small price tag,
will have too many hardware compromises.
This results in an end product that
underperforms, yielding a negative end user
experience.

Software matters when considering
the capability of hardware. It won’t make a
60 dollar device outperform a 600 dollar one.
However, software should be at a level where
it meets the hardware capabilities. In order to
achieve the right performance there are
several factors, such as complexity and
optimizations that are crucial. However,
complexity and optimizations are almost
orthogonal, as optimizations can quickly get

complex. The key is to combine both at the
right place. Use simple solutions where
possible and leverage complex optimizations
that are already out there and vetted by the
community.

Need for a new approach

WebKit for Wayland (WPE) does
exactly that. Leveraging state-of-the-art
browser optimizations capabilities provided
by WebKit, such as the JavaScript Core
Fourth-tier optimizing (FTL) JIT compiler,
and combining that with Wayland. Wayland
provides simple, elegant, graphics
compositing integration between different
layers using EGL (interface between Khronos
rendering APIs). Wayland started as a
replacement for the X Windowing System
(X11). Wayland is not an implementation but
a protocol specification between a display
server and its clients. Its implementations are
lightweight with a small footprint. Wayland
is primarily focused on performance, code
maintainability and security.

Integration effort, time to market

Creating proprietary solutions for a
single device with limited requirements will
always be viable. Performance can be
safeguarded as the complexity of the solution
is within controllable limits. However these
kind of proprietary solutions do not scale
very well over multiple devices. Even using
open source does not solve the scaling issue.
Using community driven components does
not necessarily mean it will lower integration
efforts for every device. In other open source
browser solutions substantial time is lost on
the integration of low-level primitives for the
browser such as graphics and input. This
means a full stack integration and effort on
both the Software Development Kit
(SDK)/driver level as well as how the
browser uses those primitives.

2016 Spring Technical Forum Proceedings

JavaScript CoreWebCore

DOM CSS HTML Rendering

GraphicsInput

WebKit API

GStreamer

LLINT JIT DFG

YARR WTF

FTL

Wayland Compositor

Kernel

WebKit For Wayland

Events Graphics

Events Composited screen

View Backends Wayland client

Other
Wayland clientsOther

Wayland clientsOther
Wayland clients

Events

Graphics

Figure 3: WebKit for Wayland architecture

To solve the issue, Wayland separates
these responsibilities. It provides a unified
protocol specification for a multi-program
graphical compositing environment and user
input. Simply put, the hardware/SDK
supplier can ensure that their drivers work
with Wayland by using a reference
implementation (e.g. Weston) without even
touching a browser. These hardware/SDK
suppliers can ensure the drivers are
operational with a minimal stack. And, the
browser can also be validated and tested
without doing full-stack integration on the
target device. The browser will still need to
be validated when the two are put together,
but the SDK/drivers and the browser
components can be independently validated.
This independent validation lowers the risk
of integration issues and integration effort,
thus speeding up time to market.

Code maintainability

The bigger the footprint, the harder it
is to maintain something. Simply put, more
lines of code equal more maintenance. Open
source is great, but it’s important to use the
right solution for the problem. The QT
application framework served a broader,
bigger scope than just rendering webpages.
This broader scope meant a maintaining a lot
of layers, abstractions and lines of code for a
browser.

A browser consists of a piece that

processes, parses and runs the application
(DOM, JS and CSS) and a piece that renders
graphics. WebKit handles the first series of
functions. Wayland handles the rendering
with a much leaner fit. Not only does
Wayland more concisely solve the rendering
problem, but it also provides an easy path
forward for multiple instances of WebKit and

2016 Spring Technical Forum Proceedings

sharing graphical/input resources between
other applications through the Wayland
protocol. This functionality is often sought
after in any browser solution and is more
important than ever in the embedded market
where multiple video streaming applications
are emerging fast.

When selecting an open source
project another requirement is to stay open.
Quite often in the past, proprietary solutions
were based off of something that was open
source, but then diverged from open source
with proprietary or closed modifications.
Breaking too far away from the open source
architecture means that the two are so far
apart they can’t be merged anymore. Staying
code compatible and even bug-to-bug
compatible with the upstream project is
paramount. This way, if someone finds an
issue they can solve and share it upstream
and upstream fixes can be easily pulled in.
Keeping the code upstream compatible is
essential in order to leverage the open source
community. By contributing solutions back
into the community everybody benefits.

WPE contributes back to the
community and is on average seven days
behind the main WebKit trunk. The WebKit
for Wayland browser is upstream compatible
and will continue to follow the tip of the
trunk from WebKit.

Native or local implementations

Quite often skeptics say, “A native
user interface (UI) implementation is better
then a browser”. Let’s focus on what this
implies.

First, what is a native UI?
Technically, native means something that
exists or belongs to one by nature, but in this
context that meaning doesn’t apply. Software

is (cross) compiled on a machine that uses
human readable source code to turn it into
something a machine can understand. That
doesn’t fit the meaning of native here. So
let’s paraphrase native and assume skeptics
mean something that is closer to the hardware
primitives. Often with embedded
development, as mentioned above, fewer
layers mean less complexity and could
actually benefit performance. And that’s
correct. Writing code in assembly (if you
know what you are doing) will always
outperform code that is written in a high level
programming language. Writing code in
assembly would take years, if not decades.
Which is why brilliant engineers in the early
1970’s came up with generic purpose
programming languages, such as C/C++ and
beyond.

In essence it’s not about writing the
entire application in assembly or low-level
hardware primitives. Let’s focus one level up
from those primitives like C and OpenGL
and look at the second part of the sentence:
“A native UI implementation is better then a
browser”. One can’t compare a browser to a
specific UI application written in C. The
browser by itself doesn’t do anything. It’s
necessary to write an application that runs
within the browser. Would an application
written straight on top of OpenGL
outperform an HTML5 application that runs
in the browser? That really depends on the
implementation details of the HTML5
application. Would it outperform a set of
animations in CSS? Not likely, as a browser
is very efficient in determining its strategy to
render CSS and it has years of experience to
back that up. Technologies such as the
threaded compositing provide huge benefits
in terms of performance that will need to be
replicated in the C application. This in turn,
takes a lot of time (and money) and adds to
the complexity.

2016 Spring Technical Forum Proceedings

Next, let’s look at complex 3D
graphics. Will an application that renders
complex 3D graphics written in C directly on
top of OpenGL outperform a HTML5
application using CSS animations? Yes,
without a doubt. CSS is not meant to
compete against complex 3D graphics.
Cascading style sheets are created to style the
text and blocks within the Document Object
Model (DOM) tree. In lieu of that, the
browser supports doing Canvas and Web
Graphics Library (WebGL) straight from the
browser for complex graphics. The browser
exposes methods to access those OpenGL
primitives straight from the HTML5
application. You get access to the same low-
level interface. In that sense it is as ‘native’,
to use the words of the skeptics, as writing
your application straight on top of OpenGL
for 3D graphics in C. So if both components
are using the same APIs there isn’t much
difference in the one or the other for
graphics. This makes the argument of
‘native’ no longer about access to graphical
primitives, as both environments have the
same accessibility.

That leaves the difference of writing
an application in C versus writing an
application in the browser in terms of CPU
and memory performance. What is the added
value of a browser over doing an application
directly in C? An application in C, if written
well, will be faster than anything one can
create in a browser. However the key thing to
note here is “if written well”. C and C++ are
general-purpose low-level programming
languages, meaning a software developer can
write code in a generic syntax and access
low-level APIs. This has benefits over
writing the code in assembly. C and C++ still
provide access to those low-level primitives
such as access to memory and other hardware
APIs. However, writing against low-levels
takes a great deal of time and it’s important

to note that C and C++ can be very
unforgiving. Since it has access to low-level
primitives, making a mistake can have
disastrous effects to the runtime of the
application. Due to its low-level nature it
takes a lot of time to do basic things that are
not exposed the same way as in high-level
languages such as JavaScript. This includes
type casting, threading (service workers/web
workers), non-blocking code and all the
utility the browser gives (network stack,
player interfaces, etc.).

If someone makes a mistake in
JavaScript the compiler will deal with it.
Mistakes are unavoidable. The JavaScript
Core in the browser combined with four tiers
of JIT compilers will kick in as functions are
used more frequently within an application.
The JavaScript Core JIT compilers optimize
the code to a level that is hard to accomplish
with one’s own C/C++ implementation. A lot
of research and development went into these
different JIT tiers. Because of this, it’s hard
to beat with your own application. At least
not without spending millions of hours on
optimization alone. Hours that someone has
already spent and made available within the
community as part of the browser.

On top of that an HTML5 application
is a lot easier to maintain with equal amount
of functionality in a C/C++ application. Since
the code does not need to deal with a lot of
primitives the code becomes smaller, simpler
and less complex. This makes future
maintenance easier. Finding developers is
easy and often cheaper as it does not require
very specific expertise that would otherwise
be required in a C/C++ application. It
provides equal or better performance due to
the level of optimizations the browser can
apply without involving the application
developer.

2016 Spring Technical Forum Proceedings

Back to the question: “What added
value does a browser have over doing your
application directly in C?” Well, quite a few:
ease of large-scale development, code
maintainability, time to market, threaded
compositing and built-in performance
through its JITs to name just a few.

WEBKIT FOR WAYLAND
INTEGRATION

With the removal of the QT

application framework and providing a lean
and mean integration towards Wayland the
WebKit for Wayland browser can be easily
integrated in low cost devices. If the device
supports a Wayland compositor the
integration is extremely straightforward.
However in cases where the System on a
Chip (SoC) vendor does not provide the
required support for the Wayland integration
the WPE ViewBackend can be extended to
support direct graphics integration with the
required SoC drivers. This can be used as a
fallback mechanism in cases where the SoC
is no longer actively developed on and where
it is unlikely the hardware drivers will be
extended or modified to meet the
requirements of Wayland.

WPE comes with reference build
environment recipes for Buildroot and
OpenEmbedded for easy adoption within
(existing) build systems. At the writing of
this article WPE is mostly supported on all
major hardware platforms, including various
Broadcom chipsets, Intel CE chipsets, Nvidia
gaming platforms and the Raspberry Pi
family. The latter is mainly used for
validation of WPE and because the
Raspberry Pi is widely adopted within the
open source community. This enables the
open source community to quickly develop
and validate using a widely available and
cheap device.

 Much of the development done for
WPE is fed back to the community. Lots of
changes originally developed for WPE have
already been provided back to Apple WebKit
and G-Streamer. WPE will continue to pull in
changes from upstream WebKit. WPE is
dedicated to continued support and
contributions to the open source community.

 Because of its open source nature
anyone can access the source code. The
source code is available on a GitHub
repository:
https://github.com/Metrological/WebKitFor
Wayland.

 Obtaining the source code is just a
matter of cloning the repository and building
for the right target machine (don’t forget to
checkout the Buildroot and OpenEmbedded
repositories). Contributing to WebKit for
Wayland is as simple as forking the
repository, make your changes, run the tests
and create a pull request. The changes will be
reviewed by the open source community, and
if approved, merged into the trunk. That’s it.
No license fees, no hours of meetings, no
masses of documents and no other overhead.
Just code.

CONCLUSION

 Embedded browsers have always been
the underdog of browsers. Historically, they
were available solely as proprietary or license
restrictive solutions, which didn’t offer a lot
of choice. With HTML5 features growing at
a rapid pace and entering new territories such
as the mobile, TV and automotive industries,
the need for a fast, open, bleeding edge
embedded browser is greater then ever.

Embedded browsers should be widely
available to anyone. Similar to most desktop
browsers the embedded browser should be

2016 Spring Technical Forum Proceedings

free and open source. By combining the latest
WebKit and Wayland integration is simple
and straightforward.

 The browser should follow the
bleeding edge of the W3 standards. By
following the WebKit main trunk closely, all
new features can be pulled in with ease.

WPE provides a simple, high performance,
low footprint, well maintained open source
browser. By truly being part of the open
source community, everybody is invited to
contribute to the better future of embedded
browsers.

2016 Spring Technical Forum Proceedings

