
Distributed Trace For Video Systems
 Michael Bevilacqua-Linn
 Comcast

 Abstract

 Modern video delivery systems, especially
those invoved in IP video, are large scale
distributed systems. They are composed of
many collaborating subsystems, written by
different teams, often in different
technologies. Comcast’s IP VOD system, for
instance, comprises dozens of different
subsystems involved with manifest generation,
licensing, encryption, caching, advertisement
and other alternate content insertion, user
interfaces, etc.
 These systems have no central coordinator
or statefull session manager and are often
located in geographically disparate areas. An
error can occur in a system several hops
behind the player, causing a video to fail play.
Correlating that error with the error observed
by a user in a highly distributed environment
is very challenging, as is determining how
much latency is induced by various parts of
the system.
 This paper describes how a method for
distributed trace, based around a protocol
and library named Money, an annotation-
based distributed trace protocol with roots in
Google’s Dapper and Twitter’s Zipkin. We
describe the Money protocol and how we’re
using it inside of Comcast for our video
delivery systems.

INTRODUCTION

Distributed Video Systems

 Distributed systems are a fact of life in
modern system design. There are several
reasons this is so:

• Subsystems can be scaled
independently of one another. If built
appropriately, this can be done
horizontally on commodity hardware.

• Subsystems can be built by small,
focused development teams, without
the need for much coordination
overhead.

• Subsystems can be built using a
variety of architectures and
techniques, which makes it possible to
build a new subsystem using state of
the art methods, rather than being
weighed down by years (or decades)
of history.

 Of course, nothing in life is free. One of
the primary costs that come with large scale
distributed systems is that understanding the
system as a whole is extremely challenging.

 Developers of an individual subsystem
may understand their subsystem and its
interfaces, and may even have some
understanding of subsystems that call them,
and that they in turn call. However, it’s
unlikely that they could explain the system as
a whole.

 The below sketch represents a fairly
standard, though incomplete, architecture for
an IP VOD system. Comcast’s full
production infrastructure contains many more
subsystems, however this sketch is
sufficiently demonstrative of the complexities
involved.

2015 Spring Technical Forum Proceedings

Figure 1 – Sample Architecture Sketch for IP VOD

 The sample architecture contains several
different classes of subsystems. First, there
are players for every platform that video is
delivered to, such as STBs, iOS, Android, etc.
Second, there’s a CDN comprised of a
Content Router, Edge Nodes and Origin
Nodes.

 There’s a Packager which produces ABR
streams in various formats, and finally content
protection infrastructure made up of a License
Server, Policy Decision Point, which
determines whether a given license request
should be allows, a Locker which contains
information on purchased assets, and an
Entitlement Server which contains
information on an account’s entitlements.

 Generally, no one team understands the
system as a whole. Even when an architecture
team is involved to provide oversight and
higher level design, important, often gritty,
details of system to system interaction are
poorly understood.

 In particular, two questions that are of
great interest to engineering and operations
teams are fiendishly difficult to answer in
such a complicated system. The first is “Why
did this video fail to play?”, and the second
“Why did this video take a long time to start?”

 Let’s examine failures first. Even
assuming that every individual subsystem has
a well defined set of error conditions that
allow an operator of the subsystem to

immediately identify and fix an issue, an
assumption that already borders on fantasy,
how is does an operator of the overall system
determine that a particular failed playback
was caused by a subsystem several network
hops away from the player?

 A common approach is to start by
assuming that the player is at fault, forcing the
team responsible for operating it to spend time
figuring out which upstream system threw the
error so that they can pass the bucket of water
on. This process repeats itself, going deeper
into the system, until the culprit is eventually
found.

 This is a slow, expensive process that
generally involves ticketing systems,
conference calls, and the occasional heated
conversation.

 Attempts to make troubleshooting easier
generally follow a few paths. Sometimes, an
attempt is made to pass detailed error
information from the depths of the system to
the front, which forces all subsystems in the
path to understand deep implementation
details of the subsystems they themselves rely
on. This violates the encapsulation of those
subsystems, and rarely ends well.

 Another, more successful approach is to
correlate metrics and log data from various
systems using an existing identifier and a
rough time period. For instance, it may be
possible to pull together telemetry and log
data for a given account, device combination
over the course of a few seconds, and assume
that they were all done on behalf of the same
playback session.

 The drawbacks to this approach are that
they require subsystems to have access to the
necessary identifiers, which may not be the
case, not every system needs an account
identifier to passed to it.

2015 Spring Technical Forum Proceedings

 A more complete solution is to have the
player create a unique session identifier for a
video playback session and pass it through the
call chain. Each subsystem then attaches the
session identifier to all emited operational
metrics, so that they can be correlated by data
processing systems.

 With appropriate data collection systems in
place, this gives system operators a complete
view across all the system as a whole, and
makes it possible to determine where in the
call chain an error occurred. However, a
single session identifier makes it difficult to
understand anything about individual service
to service interactions within the session, they
must be represented in an ad-hoc manner in
emitted metrics, or known a-priori by
operators.

 This becomes more import when we’re
trying to understand where latency is induced
in video is induced in video startup. While
it’s easy to record an overall timing from the
player, it’s difficult to understand which
subsystems interactions are responsible for
inducing latency, and how much, even if the
individual subsystems are performance tested
and their latency characteristics are well
understood.

 In real world situations, . In order to do so,
timing metrics must be collected from every
client-server interaction, from both the client
and server sides. A single session identifier is
insufficient for that level of granularity. In
the next session, we’ll examine a mechanism
for tracing requests through a distributed
system that does provided the needed
granularity.

Tracing a Distributed System

 The sequence of events in any complex
request through a distributed system can be
modeled as a graph of interactions between
the individual subystems. Using the reference

architecture in Figure 1, starting a session
would looke something like Figure 2.

Figure 2 - Partial Call Graph For IP VOD

 Here, every node in the graph represents an
interesting interation between two
subsystems, such as the player locating an
appropridate CDN edge node from the content
router, or the license server checking a Policy
Decision Point to decide whether or not to
allow a license request.

 The goal of a distributed trace applied to IP
video is to reconstruct the graph of calls that
takes place to satisfy a particular video
session so that useful telemetry can be
attached to the individual nodes in the trace.
In figure three, we add timing information in
to the .

Figure 3 - Distributed Trace With Timings

2015 Spring Technical Forum Proceedings

SHOW ME THE MONEY

Traces and Spans

 The main abstractions in a Money
distributed trace are Traces and Spans.

 A trace is generally scoped to all
operations and interactions that take place to
satisfy some use interaction, in our case,
starting a video and the ensuing series of
fragment requests that take place to keep it
going. The call graph in Figure 3 represents
an entire trace.

 A span represents some interesting
interaction in a trace, generally between two
subystems in the distributed system, and
associated metadata. In Figure 3, spans
represent calls between systems which
collaborate to start VOD playback.

A Minimal Implementation

 The core of the Money protocol is small.

 Trace identifiers are strings, which are
expected to be GUIDs such as those specified
in RFC-4122. Span identifiers are 64 bit
signed integers, which are expected to be
psuedorandomly generated at the creation of a
new span.

 Trace and Span identifers are passed from
system to system on an HTTP header, X-
MoneyTrace, which takes the following
form, linebreaks are inserted for clarity:

X-MoneyTrace:
trace-id=$TRACE-ID;
parent-id=$PARENT-ID;
span-id=$SPAN-ID

 Here, the trace-id field contains the
GUID which identifies the overall trace,
trace-id contains the 64 bit integer which
identifies the current span, and parent-id

identifies the parent of current span. It must
be included so that a casual relationship
between the two spans can be maintained
throughout the trace.

 The subsystem at which the trace is rooted,
which will always be the player in our case,
creates a Trace identifier. It then creates Span
identifiers and corresponding an X-

MoneyTrace headers for every request made
to second level systems. For spans at the root,
the parent-id and span-id are set to the
same value, to indicate that the span is its own
parent.

 As the request progresses through the
system, each subsystem must parse the X-

MoneyTrace header and make its identifiers
available as context for the subservice. When
one subsystem makes a request to another, it
creates a new Span identifier to encompass
the new span, and creates a new X-

MoneyTrace header with the appropriate Span
and Trace identifiers.

 On the return path, the X-MoneyTrace
header is passed back as a response header.
This makes it easy for systems which cache
HTTP responses to keep track of the Trace
that originally generated the response.

 This small protocol is all that’s required to
participate in a Money distributed trace.

Data Collection and Processing

Once distributed trace data is being passed
through the system, it can be used to tag
existing log messages, or existing application
level telemetry. We have found it useful to
collect the following base set of telemetry
across applications.

Metric Description
span-id ID for the current span, a Long
trace-id ID for the current trance, a

GUID of some sort

2015 Spring Technical Forum Proceedings

parent-id ID for the parent, a Long
span-name Operator readable name for the

span
start-time Start time for the span, logged

as GMT
http-
response

If the span encompasses an
HTTP request/response, the
response code

span-
duration

The duration of the span, in
microseconds

response-
duration

If the span encompasses an
HTTP request/response, the
response duration, from the
point of view of the application
doing the logging

error-code When the span did not
complete successfully, an error
code must be populated here

span-
success

Whether or not the span
completed successfully, the
string “true” or “false”

 A good starting point for metrics collection
is to use existing application logs and emit a
single log line containing span metadata as a
set of key value pairs.

CONCLUSION

Modern IP video delivery systems tend to be
highly distributed and complex. Operating
such a system is fundamentally different from
operating many traditional video delivery
systems in that there is no centralized
orchestrator that has a full view of the system.

We can get this overall view of the system
using a simple distributed trace protocol to
pass trace context through the system, which
can then be used to tag existing telemetry and
log data.

REFERENCES

Google Dapper -
http://research.google.com/pubs/pub36356.ht
ml

2015 Spring Technical Forum Proceedings

