

Virtualized Software Transcoding for Cloud TV Services
Yasser F. Syed Ph.D., Comcast Distinguished Engineer

Weidong Mao Ph.D., Comcast Senior Fellow & IEEE Fellow

 Abstract

 This paper will examine what will be

needed for Cloud TV video services to utilize

a virtualized software platform for

orchestrating distributed transcoding

workflows.

 There are many encoding constructs that

are now becoming realizable in this

environment. Until recently, customized IC

and hardware-based designs had been a

practical approach to getting the job done

using general-purpose servers. But these

general processors are getting faster, more

efficient, and more cooperative in multi-

processor configuration groups.

Encoding/transcoding technologies, and

especially those designed for Multiple Bit

Rate (MBR) technologies using H.264/

Advanced Video Coding (AVC), as well as

High Efficiency Video Coding (HEVC), are

increasingly designed to become more

flexible, adaptable, and scalable.

Furthermore, encoding/transcoding quality

continues to increase, resulting in higher

density growth at a much lower cost using

general-purpose servers.

This paper discusses how transcoding

workflows can be adjusted, so as to to take

advantage of new server architectures, better

networking, and distributed storage --

through a concept called a Transcoding

Resource Manager.

OVERVIEW OF MULTI-SERVICE CLOUD

TV ARCHITECTURE

 Though all video services may look the

same to a viewer, in actuality, cloud-enabled

services differ from traditional service

infrastructures in several ways. Those

differences attributable to cloud-based video

are contributing to increased service velocity,

operational efficiencies, and infrastructure

utilization. This will increase as the footprint

for cloud-enabled services grows.

 For the video industry, candidate services

for cloud-based delivery can include:

 Linear - Supplying live broadcast & cable

TV Channels, as well as live event

programming across multiple device

platforms

 VOD (Video On Demand)- Offering TV

programs, movies, and other content on a

subscription or transactional basis across

multiple device platforms

 cDVR (Cloud DVR)- Providing services to

record linear TV programs & TV series

into a digital locker, to be viewed across

multiple device platforms

 cUI (Cloud UI)- Providing single search

& navigation services across all device

platforms

 EST (Electronic Sell Through)- Providing

a service to purchase TV programs,

movies, and other content with storage in

a digital locker and viewing across

multiple device platforms.

 To implement services in a cloud

infrastructure, three basic building blocks are

required: Computing, networking, and

storage. Cloud gives the ability to process

information, move it around in a timely

manner, and to store the results for later use.

This needs to happen both at a macro level

(across a network) and at a micro level

(within a device). To make the cloud platform

optimized and realizable, the infrastructure

needs to be suited to handle not just one type

of information, but different kinds of

information, and in a concurrent manner, in

order to shift resources where needed.

 The infrastructure to do this includes a

hosted set of networked, general purpose

servers located in a collection of Data Centers

that are tied together through an IP network

physically running over fiber, Ethernet, coax,

and sometimes even wireless mediums.

Storage, in this sense, is a federated

architecture, with large, centralized server

farms, CDNs, and caching edge servers that

implement the file migration strategies that

assure data is available at the right place and

time. The servers, in turn, house processors

that can be used in collective, re-combinable

sub groups, so as to perform tasks that vary

from simple to complex.

The networking element allows data to be

transferred within and between servers, as

well as from network ingress points to

network egress points, in an expedited

manner, and thus making the task meaningful.

 Consumers are already showing their

enthusiasm for the benefits of increased

bandwidth capacity and speed. The number of

devices that can handle cable services has

expanded recently, from set top boxes to PCs,

game consoles, tablets, connected TVs, and

cell phones. A DVR service no longer

requires a hard drive in the home, because the

content can reside in the cloud. A new UI or

feature can be rolled out without testing

exhaustively on each device platform, and the

UI or feature can be designed to exhibit the

same “look and feel” or “experience” on

every screen. This can be accomplished by

handling most of the processing in the cloud,

with only rendering happening on the client

device.

Peak hours for requested content can

be scaled to handle larger demands through

load balancing on processors, so as to better

handle requests, and to strategically

copy/migrate content closer to the viewer,

which localizes bandwidth demands.

 To achieve this performance, processors

need not only to be fast, but also to work in a

multi-core configuration. Bandwidth on both

the server and on the core network needs to

increase, and has -- from 10 Gbps to 100

Gbps. Now, 1 Tbps speeds are being

approached [2]. Similarly, storage and

accessibility to storage needs to improve its

block accessibility for read/ write fetches, so

as to create a federated storage/caching

architecture with bulk access and retrieval of

data.

 These types of improvements will also

lend themselves well to other tasks beyond

just delivering services to a client/customer.

In this paper, we will examine how content

transcoding workflows, through virtualization,

can adapt to and take advantage of a cloud

infrastructure.

 Virtualization, in a software transcoder

sense, works by executing content workflows

in a way that is agnostic to specific hardware,

processing assignment, storage location or

resource capacity. The operator simply

interacts with the task/workflows with the

monitoring and rendered results presented to

them on an interface device. Using the cloud

for virtualization means that resources

through the network can be dynamically

allocated to transcoding workflows, according

to demands and schedule.

DESCRIPTION OF TRANSCODING

WORKFLOWS

 In early cable Linear/VOD workflows,

content was targeted to be played back on a

STB device through a VOD streamer or a

QAM-based live linear feed. For trusted

content providers/ aggregators/ broadcasters,

these distributable assets could be created and

delivered to the service provider according to

specifications including CableLabs ADI/VOD

[5] and the SCTE’s video specs [11]. This was

good for scheduled material that would often

come as a content refresh of a VOD catalog,

or as live linear content targeted for the just

the STB and no additional networked

services.

 For resource planning, the capacity of the

transcoding system needed to be based on a

peak transcoding rate covering file

transcoding equipment for VOD and the

recording of live feeds. That’s because the

peak transcoding rate is more dependent on

the time constraints of processing the material

than on catalog volume [4].

 Another issue was getting the mezzanine

assets or contribution feeds to the transcoding

systems. Traditionally, this was done through

a satellite pitcher/catcher infrastructure, or,

more recently, with IP distribution delivery

taking place over FTP-like connections (e.g.

Aspera).

 To get expanded Linear/VOD services to

the STB, transcoding resources need to be

continually increased to keep up with

demand. Today, the demand for transcoding

resources is exponentially exploding due to:

 VOD services being expanded to COAM

(Customer Owned & Managed) retail

devices (Tablets, PC, Cell Phones)
1

 Turn-around demands getting tighter (to

hours instead of days/weeks, C3/C7)

 Expanded Current Program content (over

200 TV shows for Fall 2013! [12])

1
 To address CO&AM devices, adaptive streaming

technologies generate 5-10 new encodes for each

content asset. Each then needs to be wrapped in 1-3

DRMs and packaging technologies, dependent on

device and delivery agreements.

 Expanded Backlog content

 Cloud DVR Services based on linear feeds

 EST (Electronic Sell Through) Assets w/

DLNA

 Higher Resolution/ Frame rate [1080p,

UHD, 60 Fps] versions for content

 More diverse and increasing set of

content providers

 To handle this expanded scale of

encodings, content workflows need to evolve

to be faster. They also need to consider

integrating priority of the job as part of the

content workflows. This integration of job

priority could be categorized into 4 content

workflow types:

1. Just-in-Time (JIT) Content Workflow

A JIT content workflow requires a quick-

turnaround service (immediate, minutes,

hours). Immediate workflows may be for

linear live services, and recordings of linear

services. Examples of a “minutes & hours

workflow” are highest priority VOD

transcoding services, such as live events, or

unscheduled VOD assets that require a

mezzanine/contribution asset as a source.

2. Near-Time (NT) Content Workflow

A NT content workflow could be a high

priority transcode for unbroadcasted material

to handle live turn-around events (e.g. non-

broadcasted Olympics events), broadcasted

events that require a transcode, C3/C7 re-

encodes, and repairs to pre-existing VOD

assets.

3. Catalog Content Workflow

A catalog content workflow could handle

scheduled assets that are a part of a VOD

content catalogue refresh, EST offering, or

catalog migration. This is typically not a high

priority transcode unless a VOD presentation

time is quickly approaching.

4. Assembly Content Workflow

Assembly Content Workflows do not require

additional transcoding processes but may need

things like JIT packaging, manifest

generation, manifest conditioning, or dynamic

ad replacement. This may be initiated by a

customer request, and ties in with using the

Cloud for delivery of the service to the

viewer.

 How can a transcoding service take

advantage of being virtualized in a cloud-

based infrastructure to handle a large scale of

content workflows? The benefits of being

virtualized are multiple: 1) a service instance

can be created or destroyed based upon

transcoding demand, 2) a service instance

needn’t be dependent upon dedicated

hardware but general purpose servers, and 3)

a service instance can be moved anywhere in

the infrastructure, for network bandwidth or

storage optimizations. In the near term, it can

handle more of the lower priority workflows

and reduce the anticipated site-based

transcoding equipment needed. In addition,

cloud-based resources can be shared with

other task-based services to reduce

transcoding resources.

 What is needed to evolve in this direction?

First, a move to using software based

transcoding, followed by higher bandwidth

for movement of data at both the network

level and server level. Lastly, a more defined

breakdown of transcoding processes into more

granular, operable atomic units.

REALIZING A SOFTWARE TRANSCODER

ON GENERAL PURPOSE SERVERS

 Software video transcoding requires a

significant amount of calculations around the

stages of pre-processing, transcoding, and

wrapping/packaging. Pre-processing functions

are things like decoding, pre-filtering,

cropping, scaling, and watermarking.

Transcoding processes include transforms

(DCT/Integer), quantization, block-based

operations, motion search/prediction, and

entropy operations. Wrapping/packing

functions exist to prepare the content for

streaming, as well as chunking/manifest

creation for adaptive streaming, or file

formats wrapped in MXF. Some of these

operations are coefficient based and can scale

up to the number of sampled pixels. Others

are more blocked-based, repeatable

operations. Some other operations don’t

happen at this scale and require more

sequentially-based threads. The types of

operations for video encoding are basically a

combination of sequential processing, quick

paralizeable calculations, and fetching/putting

from fast cache memory.

 Video transcoding can be implemented in

the following architectures with each type

having tradeoffs in the areas of

programmability (new code), platform rework

(redesign based on server hardware type),

quality (is it fixed or can it continuously

improve?), costs per stream, cloud fit

(deployability in Cloud infrastructure),

density (rack compactness), and power [See

Table 1].

Table 1:Video Transcoding Architectures &

Tradeoffs

 Hardware architectures can be the most

efficient and integrated for high-density

transcoding -- but because of their

permanence, specialization, and high costs,

they represent a difficult fit into cloud

architectures. The higher costs are

attributable to specialization, and an inability

to drive costs down through volume. Also,

transcoding hardware may not be optimized

Architecture	 Program
mability	

Platform	
Rework	

Quality	 Costs/	
stream	

Cloud	Fit	 Density	 Power	

Hardware	
Based	

Hardware	
Update	

None	 Fixed	 High	 Low	 High	 Low	

Software	
w/CPU	
(single/multi-
core)	

Flexible	 Low/High	 Improve	 Low	 Mid/High	 Low/Mid	 Mid/High	

Software	w/	
CPU	&	GPU	

Flexible	 High	 Improve	 Low	 High	 High	 Mid	

	

for doing other task, which is a key to

unlocking cloud architecture potential.

 A general-purpose server that is suitable

for multiple tasks, including transcoding, is a

stronger option for distributed infrastructures

with large volume scalability.

 A key component of its effectiveness is

the performance of a single CPU. A single

CPU is capable of running 1-2 threads, using

time division multiplexing. Each thread can

run a single set of sequential instructions. The

faster the performance of the CPU, the more

threads and more complex set of instructions

can be used. The limitation on the

performance of a single CPU is due to an

upper bound on clock frequency, which in

turn stems from silicon die limitations.

An alternative is to implement a multi-

core architecture. This allows for multiple

processors to be put on a single silicon die.

When designed properly (optimizing

sequential threads across each core), this can

lead to higher performance at lower processor

speeds, with improved power management

and cooling. Early multicore architectures

involved 2 cores, but have been evolving to

2/4/8/16/32 cores. For processing purposes,

performance optimization may not be directly

proportional to number cores, because each

individual process needs to be independent

but sequentially assembled. An additional

factor to consider is the amount of code

rework needed to optimize over different

types of multi-core architectures, which can

vary over type as well as number [6]. Some

experiments of multi-core architectures in

HEVC studies have seen performance speed-

ups of 25 times that of a single core

architecture [7].

 Pure software encodes can run on this

platform, but do not always take full

advantage of the multicore architecture --

even though lower level toolkits may provide

ways of taking some advantage of this.

Implementation can be further accelerated

through the use of Graphical Processing Units

(GPUs) and fast access memory. GPUs

became popular for the computer gaming

industry as specialized PC cards used in

creating graphics operations, such as textures

and shading. GPUs harness a parallel

throughput architecture that is suitable for

processing many concurrent threads slowly,

and can be suitable for some transcoding

operations of a highly scalable nature -- such

as coefficient level/ pixel-based operations or

block-based operations. GPUs need to have a

full input pipeline to be most efficient, and

this is where fast access to memory is needed,

with optimizations in the code to allow for

large block fetching. GPUs can exist as a

separate chip on a board (e.g. GT 60xx), in

which can handle large volumes but also need

to be tied into larger bandwidth and faster

memory access that is off the die. GPUs and

memory can also coexist on the die, but

process less volume and memory while

optimizing data management between CPU

and on-board GPUs. Originally, GPUs were

an afterthought on the die for basic computer

graphics purposes. If used for video

transcoding, the encoding time speeds up, but

the picture quality could suffer.

As chip architecture developed, more

room became available on the die (to

accommodate I/O demands), which allowed

the inclusion of more and better GPUs,

memory, and other specialized processors, to

address the growing importance of customer-

facing media applications [8,9]. This has

greatly improved the performance of GPUs on

the die -- in some cases up to 75 times over

the span of 4-5 years [9] . The popularity of

this architecture is evident, with 9 out of 10

PCs already shipping CPU and GPU on the

same piece of silicon. [8]

 Today, specialized processors are built on

the die or GPU chip that is dedicated to

perform minute operations involved in video

coding. This aims to improve quality while

increasing processing speed. GPU/CPU

architectures designed to share more memory

can further increase performance. There are

several new specialized media structures used

to help accelerate video encoding [such as

Quicksync (Intel – Haswell), and VCE logic

(Nvidia Radeon)]. These use video

middleware toolkits such as Handbrake and

OpenCL as efficient access layers to the

hardware. As GPU performance improves

[See Fig. 1], it increasingly appears that the

use of the evolving general-purpose servers

that have these capabilities will be an ideal

architecture for transcoding operations. [6]

Figure 1: Evolution of Chip Graphics

Performance [9]

 Software video encoding can be realizable

on server architectures, but ultimately needs

to be optimized for the multicore architecture

that can be accelerated through GPUs, cache

memory, and specialized processors using

video conversion toolkits. Again, the three

components needed for the cloud are

computing , networking, and storage [See Fig.

2] -- at a macro and micro level. A multicore

architecture with mixed CPUs/GPUs

integrates well with this concept [See Fig. 3].

Building servers for this should consider a

combination of architecture & capabilities,

BOM costs, and data center operational costs.

Figure 2: Transcoding Workflows using the

Cloud

Figure 3: Mixed CPU/GPU architecture [11]

TRADEOFFS OF QUALITY, DENSITY, AND

PERFORMANCE

 Bringing up a transcoding instance on a

general-purpose server allows the flexibility

of performing tasks in more than one way.

Different approaches may be optimized to

converse resources, speed-up transcodes, or

improve quality. The advantage of this over

dedicated hardware is to be able to look on a

larger scale (beyond just a box) to assign and

adjust resources (often across different

locales) as needed to produce an acceptable

output volume.

 In dedicated transcoding hardware, some

algorithms may be fixed to avoid the

complexity of putting multiple approaches in

the hardware. An example of this is motion

search algorithms. This can affect the

accuracy and number of motion vectors

generated, which can in turn affect the size of

predicted pictures. In dedicated hardware,

motion search approaches and range may be

limited. Under certain circumstances, using an

alternative approach may actually improve

picture quality. This opportunity (and others

such as dynamic encoding, dithering, and

edge enhancement) can now be available

using this type of architecture. Another

example is the ability to assign cache memory

resourced for a single instance. Expanding the

amount of on-cache memory and allowing

large block fetch movements can optimize the

interaction between CPUs and GPUs, but

optimization can differ depending on the size

of the picture [1].

 Lastly, in a software/general server-based

environment, more than one instance can now

be invoked to handle a task. A “split and

stitch” process could use the multiple

instances to split the content up, process each

section in parallel, then reassemble the

compressed stream [See Fig. 4]. This can be

helpful when dealing with near time or JIT

content workflows.

Figure 4: Split & Stitch Workflow

 With a more actively managed

orchestration of a workflow, there exist many

yet-to-be-explored advantages that may be

useful for content transcoding workflows

using software on general-purpose servers. It

does, however, require changes in traditional

content workflows.

DESIGNING CONTENT WORKFLOWS FOR

THE CLOUD

A. Adjusting Traditional Content Workflows

 A traditional approach in transcoding is to

make use of “hot folders” to process content

in each step of the workflow [See Fig. 5].

Basically, content and/or metadata is put into

a storage folder. The transcoding operation

would then see the content and start

processing it. At the end of the task, it places

the content in an output folder, which then

may act as an input folder for another task.

Figure 5: Hot Folder Workflow

 There are several items to be aware of

when using hot folders:

 Content needs to be processed in the same

way (issues arise when the content gets

placed in the wrong folder)

 Content needs to be complete before a

task is started

 It is difficult to indicate priority, and thus

harder to adjust the workflow because of

priority

 Resources can idle, due to empty folders,

making it all the more difficult to share

resources

 An alternative approach is to associate

tasks with the content as a “job”. In this sense,

the content is acted upon, rather than placed in

a folder. The transcoding instance is not

designed to do a dedicated set of tasks, but

instead looks to see what task needs to happen

on a piece content at the moment. This is

similar to the use of a general-purpose server

rather than a dedicated hardware device. With

an associated ID and metadata (such as due

date, aspect ratio, etc.) , the concept of a job

can be a powerful concept and can enable:

 Workflows that adjust to content

 Reduction of storage

 Scheduling of resources even before

content arrives

 Prioritizing workflow to either handle

voluminous or bursty traffic

 Reducing transcoding resources when not

needed and applying them to other cloud

tasks

Additionally, another change that needs to

be made to improve adaptability to cloud

and data is to break down tasks into more

atomic units. Instead of just transcode, it

can be broken down further into

operations such as:

 Job verification

 Schedule

 Unwrap

 Verification (syntax, file size, semantic)

 Baseband processing (e.g. Cropping,

Scaling, prefiltering)

 Decode

 Watermark, Fingerprint

 Encode

 Delete

 Wrapping, Distribution

 Each of these tasks has their own

combination of resources and can vary in

complexity and time-to-finish. These three

factors may not be deterministic, but can be

bounded. These tasks can be combined in

different manners to adjust the workflow to

the types of source content, types of job,

available resources, and time constraints.

Creating smaller task modules and using a job

workflow will allow better processing in the

cloud in a resource optimized way.

B. Orchestrating Workflows Using A

Transcoding Resource Manager

 In order for a virtualized software

transcoding instance to operate in a cloud

infrastructure, the following are required: A

balance of resources, network bandwidth

demands, and timely output volume of assets.

In order to keep these three aspects in balance,

while exploiting the advantages of non-

dedicated, general-purpose resources, the

concept of a transcoder resource manager

needs to exist [See Fig. 6]. This is more than

just a workflow manager, because it balances

server resources, storage, and bandwidth in a

scheduled manner.

Figure 6: Workflow Using a Transcoder

Resource Manager

 The transcoder resource manager

determines when and where an instance(s)

will be created to address a job and when that

instance will be destroyed/taken down. It will

consider what server(s) to use and where to

locate storage. It will schedule jobs based

upon priority, type of content workflow and

estimated time to completion (JIT, Near-

Time, Catalog, Assembly). It will also ensure

that jobs will be done agnostic to any types of

equipment failures.

 Some of the decisions that the transcoder

resource manager could make can be

exemplified by a mezzanine workflow to

create a UHD-1 output as well as a set of

MBR (Multi-Bitrate) streams:

 Determine how instances can exist at

site(s) closest to the content mezzanine

 Verify source characteristics through

metadata and syntax validation

 Create an instance to convert color gamut

from BT 2020 to Rec 709

 Convert 10-bit input into an 8-bit version

 Split content into 5 sections and create 30

instances to process each section, for both

4K and MBR outputs

 Determine task assignment on servers

using CPU utilization as a guideline

 Record linear programming

 Index file generation

 Manifest generation

 CDN distribution

 Destroy task instances and copies

OPERATIONAL IMPACTS

 The basic building blocks for cloud

infrastructure (computing, networking,

storage) need to support the maximum

performance needs of individual tasks for

virtualized software transcoding. Cloud-based

software and virtualized transcoding

platforms will also impose unique operational

requirements for the service providers.

 These may include: (1) Capacity planning

of compute and networking resources to

enable simultaneous transcoding streams

(dependent on types of services - linear, VOD,

cDVR) and mode of transcoding (real-time,

just-in-time); (2) Distribution topology of

transcoding resources to national or regional

data centers, based on attributes of source

origination, network connectivity, national or

local channels, and content delivery network;

(3) Remote operational monitoring of

software transcoding configuration, usage,

performance, and availability; (4)

Redundancy with automatic failover; and, (5)

Transcoding software upgrade strategy.

CONCLUSION

Shifting to cloud-based transcoding services

will help address the ever-increasing demand

for video services with flexible resources. As

algorithms continue to be optimized for multi-

core architectures, and as networking

bandwidth increases, and storage gets more

accessible, cloud-based transcoding services

can scale to meet the demand without scaling

the costs in the same manner. Modification in

the content workflows that are needed are: 1)

implementing a job-based priority workflow,

2) breaking down the transcoding processes

into smaller, atomic tasks, and 3) creating a

transcoding resource manager to coordinate

tasks and distributed equipment resources.

 This approach can open up vast new types

of business and operational models, where

transcoding resources can be leased rather

than purchased, and used to off-load peak

transcoding demands. Virtualized software

transcoders can create a flexible transcoding

process that will be needed as the types and

volumes of content for linear, VoD, and

cDVR services grow.

REFERENCES

[1] F. Lee, “implementing H.264 encoding

algorithms”, Embedded Systems, March

2006, pp.34-37.

[2] J. Baumgartner, “Comcast’s Unsung Hero:

The Network”, Multichannel News, Feb. 3
rd

,

2014, p.2.

[3] M.Ferrell, “Why Comcast Is Winning

Subscriber War (for Now)”, Multichannel

News, Feb 3., 2014, p.29

[4] Conversations with Austin Vrbas, Brian

Taft, Chris Cunningham, Feb 2012.

[5] www.cablelabs.com/specifications: MD-

SP-ADI1.1, MD-SP-CONTENTv3.0, MD-

SP-VOD-CONTENT1.1.

[6] Cyril Kowaliski, A look at hardware video

transcoding on the PC: Performance and

image quality with black boxes and Open CL.

Tech report,., www.techreport.com, July 30
th

 ,

2012.

http://www.cablelabs.com/specifications
http://www.techreport.com/

[7] M. Horowitz, F. Kossentini, and H. Tmar,

“ Informal Subjective Video Quality

Comparison Between the eBrisk-UHD HEVC

and x264 AVC Encoders”, JCTVC-P0158,

16
th

 Meeting of JCT, San Jose , Ca Jan 9-17,

2014.

[8] I. Cutress, and R. Garg, “ AMD Kaveri

Review: A8-7600 and A10-7850K Tested”

AnandTech, Anandtech.com, Jan. 14, 2014

[9] A. L. Shimpi, “Intel Iris Pro 5200

Graphics Review: Core i7-4950HQ Tested”

Anandtech, Anandtech.com, June 1
,
2013.

[10] www.aurelian.plyer.fr/phd/gpu-

programming

[11] www.scte.org/standards: ANSI/SCTE

128-1 2013, ANSI/SCTE 128-2 2013,

ANSI/SCTE 54 2009, ANSI/SCTE 35 2013a

[12] tvbythenumbers.zap2it.com

/2013/08/01/list-of-2013-fall-tv-show-

premires-dates/195183

http://www.aurelian.plyer.fr/phd/gpu-programming
http://www.aurelian.plyer.fr/phd/gpu-programming
http://www.scte.org/standards

