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 Abstract 

 

     This paper will examine what will be 

needed for Cloud TV video services to utilize 

a virtualized software platform for 

orchestrating distributed transcoding 

workflows.  

 

     There are many encoding constructs that 

are now becoming realizable in this 

environment. Until recently, customized IC 

and hardware-based designs had been a 

practical approach to getting the job done 

using general-purpose servers. But these 

general processors are getting faster, more 

efficient, and more cooperative in multi-

processor configuration groups.  

 

Encoding/transcoding technologies, and 

especially those designed for Multiple Bit 

Rate (MBR) technologies using H.264/ 

Advanced Video Coding (AVC), as well as 

High Efficiency Video Coding (HEVC), are 

increasingly designed to become more 

flexible, adaptable, and scalable.  

 

Furthermore,  encoding/transcoding quality 

continues to increase, resulting in  higher 

density growth at a much lower cost using 

general-purpose servers.  

 

This paper discusses how transcoding 

workflows can be adjusted, so as to  to take 

advantage of new server architectures, better 

networking, and distributed storage -- 

through a concept called a Transcoding 

Resource Manager. 

 

OVERVIEW OF MULTI-SERVICE CLOUD 

TV ARCHITECTURE 

 

     Though all video services may look the 

same to a viewer, in actuality, cloud-enabled 

services differ from traditional service 

infrastructures in several ways. Those 

differences attributable to cloud-based video 

are contributing to increased service velocity, 

operational efficiencies, and infrastructure 

utilization. This will increase as the footprint 

for cloud-enabled services grows. 

 

     For the video industry, candidate services 

for cloud-based delivery can include: 

 Linear -  Supplying live broadcast & cable 

TV Channels, as well as live event 

programming across multiple device 

platforms 

 VOD (Video On Demand)- Offering TV 

programs, movies, and other content on a 

subscription or transactional basis across 

multiple device platforms 

 cDVR (Cloud DVR)- Providing services to 

record linear TV programs & TV series 

into a digital locker, to be viewed across 

multiple device platforms 

 cUI (Cloud UI)- Providing single search 

& navigation services across all device 

platforms 

 EST (Electronic Sell Through)- Providing 

a service to purchase TV programs, 

movies, and other content with storage in 

a digital locker and viewing across 

multiple device platforms. 

 

     To implement services in a cloud 

infrastructure, three basic building blocks are 

required: Computing, networking, and 

storage. Cloud gives the ability to process 

information, move it around in a timely 

manner, and to store the results for later use.  

This needs to happen both at a macro level 

(across a network) and at a micro level 

(within a device). To make the cloud platform 



 

optimized and realizable, the infrastructure 

needs to be suited to handle not just one type 

of information, but different kinds of 

information, and in a concurrent manner, in 

order to shift resources where needed. 

 

      The infrastructure to do this includes a 

hosted set of networked, general purpose 

servers located in a collection of Data Centers 

that are tied together through an IP network 

physically running over fiber, Ethernet, coax, 

and sometimes even wireless mediums.  

 

Storage, in this sense, is a federated 

architecture, with large, centralized server 

farms, CDNs, and caching edge servers that 

implement the file migration strategies that 

assure data is available at the right place and 

time.  The servers, in turn,  house processors 

that can be used in collective, re-combinable 

sub groups, so as to perform tasks that vary 

from simple to complex.  

 

The networking element allows data to be 

transferred within and between servers, as 

well as from network ingress points to 

network egress  points, in an expedited 

manner, and thus making the task meaningful.  

 

      Consumers are already showing their 

enthusiasm for the benefits of increased  

bandwidth capacity and speed. The number of 

devices that can handle cable services has 

expanded recently, from  set top boxes to PCs, 

game consoles, tablets, connected TVs, and 

cell phones. A DVR service no longer 

requires a hard drive in the home, because the 

content can reside in the cloud. A new UI or 

feature can be rolled out without testing 

exhaustively on each device platform, and the 

UI or feature can be designed to exhibit the 

same “look and feel” or “experience” on 

every screen. This can be accomplished by 

handling most of the processing in the cloud, 

with only rendering happening on the client 

device.  

 

Peak hours for requested content can 

be scaled to handle larger demands through 

load balancing on processors, so as to better 

handle requests, and to strategically 

copy/migrate content closer to the viewer, 

which localizes bandwidth demands. 

 

     To achieve this performance, processors 

need not only to be fast, but also to work in a 

multi-core configuration. Bandwidth on both 

the server and on the core network needs to 

increase, and has -- from 10 Gbps to 100 

Gbps. Now, 1 Tbps speeds are being 

approached [2]. Similarly, storage and 

accessibility to storage needs to improve  its 

block accessibility for read/ write fetches, so 

as to create a federated storage/caching 

architecture with bulk access and retrieval of 

data.  

 

     These types of improvements will also 

lend themselves well to other tasks beyond 

just delivering services to a client/customer. 

In this paper, we will examine how content 

transcoding workflows, through virtualization, 

can adapt to and take advantage of a cloud 

infrastructure. 

 

      Virtualization, in a software transcoder 

sense, works by executing content workflows 

in a way that is agnostic to specific hardware, 

processing assignment, storage location or 

resource capacity. The operator simply 

interacts with the task/workflows with the 

monitoring and rendered results presented to 

them on an interface device. Using the cloud 

for virtualization means that resources 

through the network can be dynamically 

allocated to transcoding workflows, according 

to demands and schedule. 
 

DESCRIPTION OF TRANSCODING 

WORKFLOWS 
 

     In early cable Linear/VOD workflows, 

content was targeted to be played back on a 

STB device through a VOD streamer or a 



 

QAM-based live linear feed. For trusted 

content providers/ aggregators/ broadcasters, 

these distributable assets could be created and 

delivered to the service provider according to 

specifications including CableLabs ADI/VOD 

[5] and the SCTE’s video specs [11]. This was 

good for scheduled material that would often 

come as a content refresh of a VOD catalog, 

or as live linear content targeted for the just 

the STB and no additional networked 

services.  

 

     For resource planning, the capacity of the 

transcoding system needed to be based on a 

peak transcoding rate covering  file 

transcoding equipment for VOD and the 

recording of live feeds. That’s because the 

peak transcoding rate is more dependent on 

the time constraints of processing the material 

than on catalog volume [4].  

 

     Another issue was getting the mezzanine 

assets or contribution feeds to the transcoding 

systems. Traditionally, this was done through 

a satellite pitcher/catcher infrastructure, or,  

more recently, with IP distribution delivery 

taking place over FTP-like connections (e.g. 

Aspera). 

 

     To get expanded Linear/VOD services to 

the STB, transcoding resources need to be 

continually increased to keep up with  

demand. Today, the demand for transcoding 

resources is exponentially exploding due to: 

 VOD services being expanded to COAM 

(Customer Owned & Managed) retail 

devices (Tablets, PC, Cell Phones)
1
 

 Turn-around demands getting tighter (to 

hours instead of days/weeks, C3/C7) 

 Expanded Current Program content (over 

200 TV shows for Fall 2013! [12]) 

                     
1
  To address CO&AM devices, adaptive streaming 

technologies generate 5-10 new encodes for each 

content asset. Each then needs to be wrapped in 1-3 

DRMs and packaging technologies, dependent on  

device and delivery agreements. 

 Expanded Backlog content 

 Cloud DVR Services based on linear feeds 

 EST (Electronic Sell Through) Assets w/ 

DLNA  

 Higher Resolution/ Frame rate [1080p, 

UHD, 60 Fps] versions for content 

 More diverse and increasing set  of 

content providers  
 

     To handle this expanded scale of 

encodings, content workflows need to evolve 

to be faster. They also need to consider 

integrating priority of the job as part of the 

content workflows. This integration of job 

priority could be categorized into 4 content 

workflow types: 

 

1. Just-in-Time (JIT) Content Workflow 

A JIT content workflow requires a quick-

turnaround service (immediate, minutes, 

hours). Immediate workflows may be for 

linear live services, and recordings of linear 

services. Examples of a “minutes & hours 

workflow” are highest priority VOD 

transcoding services, such as live events, or 

unscheduled VOD assets that require a 

mezzanine/contribution asset as a source. 

2. Near-Time (NT) Content Workflow 

A NT content workflow could be a high 

priority transcode for unbroadcasted material 

to handle live turn-around events (e.g. non-

broadcasted Olympics events), broadcasted 

events that require a transcode, C3/C7 re-

encodes, and repairs to pre-existing VOD 

assets. 

3. Catalog Content Workflow 

A catalog content workflow could handle 

scheduled assets that are a part of a VOD 

content catalogue refresh, EST offering, or 

catalog migration. This is typically not a high 

priority transcode unless a VOD presentation 

time is quickly approaching. 



 

4. Assembly Content Workflow 

Assembly Content Workflows do not require 

additional transcoding processes but may need 

things like JIT packaging, manifest 

generation, manifest conditioning, or dynamic 

ad replacement. This may be initiated by a 

customer request, and ties in with using the 

Cloud for delivery of the service to the 

viewer. 

 

     How can a transcoding service take 

advantage of being virtualized in a cloud-

based infrastructure to handle a large scale of 

content workflows? The benefits of being 

virtualized are multiple: 1) a service instance 

can be created or destroyed based upon 

transcoding demand, 2) a service instance 

needn’t be dependent upon dedicated 

hardware but general purpose servers, and 3) 

a service instance can be moved anywhere in 

the infrastructure, for network bandwidth or 

storage optimizations. In the near term, it can 

handle more of the lower priority workflows 

and reduce the anticipated site-based 

transcoding equipment needed. In addition, 

cloud-based resources can be shared with 

other task-based services to reduce 

transcoding resources. 

 

     What is needed to evolve in this direction? 

First, a move to using software based 

transcoding, followed by higher bandwidth 

for movement of data at both the network 

level and server level. Lastly,  a more defined 

breakdown of transcoding processes into more 

granular, operable atomic units.  
 

REALIZING A SOFTWARE TRANSCODER 

ON GENERAL PURPOSE SERVERS 
 

     Software video transcoding requires a 

significant amount of  calculations  around the 

stages of pre-processing, transcoding, and 

wrapping/packaging. Pre-processing functions 

are things like decoding, pre-filtering, 

cropping, scaling, and watermarking. 

Transcoding processes include transforms 

(DCT/Integer), quantization, block-based 

operations, motion search/prediction, and 

entropy operations. Wrapping/packing 

functions exist to prepare the content for 

streaming, as well as chunking/manifest 

creation for adaptive streaming, or file 

formats wrapped in MXF. Some of these 

operations are coefficient based and can scale 

up to the number of sampled pixels. Others 

are more blocked-based, repeatable 

operations. Some other operations don’t 

happen at this scale and require more 

sequentially-based threads. The types of 

operations for video encoding are basically a 

combination of sequential processing, quick 

paralizeable calculations, and fetching/putting 

from fast cache memory.  

 

     Video transcoding can be implemented in 

the following architectures with each type 

having tradeoffs in the areas of 

programmability (new code), platform rework 

(redesign based on server hardware type), 

quality (is it fixed or can it continuously 

improve?), costs per stream, cloud fit 

(deployability in Cloud infrastructure), 

density (rack compactness), and power [See 

Table 1]. 

 

 
Table 1:Video Transcoding Architectures & 

Tradeoffs 

 

    Hardware architectures can be the most 

efficient and integrated for high-density 

transcoding -- but because of their 

permanence, specialization, and high costs, 

they represent a difficult  fit into cloud 

architectures.  The higher costs are 

attributable to specialization, and an inability 

to drive costs down through volume. Also, 

transcoding hardware may not be optimized 

Architecture	 Program
mability	

Platform	
Rework	

Quality	 Costs/	
stream	

Cloud	Fit	 Density	 Power	

Hardware	
Based	

Hardware	
Update	

None	 Fixed	 High	 Low	 High	 Low	

Software	
w/CPU	
(single/multi-
core)	

Flexible	 Low/High	 Improve	 Low	 Mid/High	 Low/Mid	 Mid/High	

Software	w/	
CPU	&	GPU	

Flexible	 High	 Improve	 Low	 High	 High	 Mid	

	



 

for doing other task, which is a key to 

unlocking cloud architecture potential. 

     A general-purpose server that is suitable 

for multiple tasks, including transcoding, is a 

stronger option for distributed infrastructures 

with large volume scalability.  

 

      A key component of its effectiveness is 

the performance of a single CPU.  A single 

CPU is capable of running 1-2 threads, using 

time division multiplexing. Each thread can 

run a single set of sequential instructions. The 

faster the performance of the CPU, the more 

threads and more complex set of instructions 

can be used.  The limitation on the 

performance of a single CPU is  due to an 

upper bound on clock frequency, which in 

turn stems from silicon die limitations.  

 

An alternative is to implement a multi-

core architecture. This allows for multiple 

processors to be put on a single silicon die. 

When designed properly (optimizing 

sequential threads across each core), this can 

lead to higher performance at lower processor 

speeds, with improved power management 

and cooling. Early multicore architectures 

involved 2 cores, but have been evolving to 

2/4/8/16/32 cores. For processing purposes, 

performance optimization may not be directly 

proportional to number cores, because each 

individual process needs to be independent 

but sequentially assembled. An additional 

factor to consider is the amount of code 

rework needed to optimize over different 

types of multi-core architectures, which can 

vary over type as well as number [6]. Some 

experiments of multi-core architectures in 

HEVC studies have seen performance speed-

ups of 25 times that of a single core 

architecture [7]. 
 

     Pure software encodes can run on this 

platform, but do not always take full 

advantage of the multicore architecture -- 

even though lower level toolkits may provide 

ways of taking some advantage of this. 

Implementation  can be further accelerated 

through the use of Graphical Processing Units 

(GPUs) and fast access memory. GPUs 

became popular for the computer gaming 

industry as specialized PC cards used in 

creating graphics operations, such as textures 

and shading. GPUs harness a parallel 

throughput architecture that is suitable for 

processing many concurrent threads slowly, 

and can be suitable for some transcoding 

operations of a highly scalable nature -- such 

as coefficient level/ pixel-based operations or 

block-based operations. GPUs need to have a 

full input pipeline to be most efficient,  and 

this is where fast access to memory is needed, 

with optimizations in the code to allow for 

large block fetching. GPUs can exist as a 

separate chip on a board (e.g. GT 60xx), in 

which can handle large volumes but also need 

to be tied into larger bandwidth and faster 

memory access that is off the die.  GPUs and 

memory can also coexist on the die, but 

process less volume and memory while 

optimizing data management between CPU 

and on-board GPUs. Originally, GPUs were 

an afterthought on the die for basic computer 

graphics purposes. If used for video 

transcoding, the encoding time speeds up, but 

the picture quality could suffer.  

 

As chip architecture developed, more 

room became available on the die  (to 

accommodate I/O demands ), which allowed 

the inclusion of more and better GPUs, 

memory, and other specialized processors,  to 

address the growing importance of customer-

facing media applications [8,9]. This has 

greatly improved the performance of GPUs on 

the die -- in some cases up to 75 times over 

the span of 4-5 years [9] . The popularity of 

this architecture is evident, with 9 out of 10 

PCs already shipping CPU and GPU on the 

same piece of silicon. [8] 

 

     Today, specialized processors are built on 

the die or GPU chip that is dedicated to 

perform minute operations involved in video 



 

coding. This aims to improve quality while 

increasing processing speed.  GPU/CPU 

architectures designed to share more memory 

can further increase performance. There are 

several  new specialized media structures used  

to help accelerate video encoding [such as  

Quicksync (Intel – Haswell), and VCE logic 

(Nvidia Radeon)]. These use video 

middleware toolkits such as Handbrake and 

OpenCL as efficient access layers to the  

hardware. As GPU performance improves 

[See Fig. 1], it increasingly appears that the 

use of the evolving general-purpose servers 

that have these capabilities will be an ideal 

architecture for transcoding operations. [6] 

 

 
Figure 1: Evolution of Chip Graphics 

Performance [9] 

 

     Software video encoding can be realizable 

on server architectures, but ultimately needs 

to be optimized for the multicore architecture 

that can be accelerated through GPUs, cache 

memory, and specialized processors using 

video conversion toolkits. Again, the three 

components needed for the cloud are 

computing , networking, and storage [See Fig. 

2] -- at a macro and micro level. A multicore 

architecture with mixed CPUs/GPUs 

integrates well with this concept [See Fig. 3]. 

Building servers for this should consider a 

combination of architecture & capabilities, 

BOM costs, and data center operational costs.  

 

 
 
Figure 2: Transcoding Workflows using the 

Cloud  

 
Figure 3: Mixed CPU/GPU architecture [11] 

 

TRADEOFFS OF QUALITY, DENSITY, AND 

PERFORMANCE  

 

     Bringing up a transcoding instance on a 

general-purpose server allows the flexibility 

of performing tasks in more than one way. 

Different approaches may be optimized to 

converse resources, speed-up transcodes, or 

improve quality.  The advantage of this over 

dedicated hardware is to be able to look on a 

larger scale (beyond just a  box) to assign and 

adjust resources (often across different 

locales) as needed to produce an acceptable 

output volume. 

 

     In dedicated transcoding hardware, some 

algorithms may be fixed to avoid the 

complexity of putting multiple approaches in 

the hardware. An example of this is motion 

search algorithms. This can affect the 

accuracy and number of motion vectors 

generated, which can in turn affect the size of 

predicted pictures. In dedicated hardware, 

motion search approaches and range may be 

limited. Under certain circumstances, using an 



 

alternative approach may actually improve 

picture quality. This opportunity (and others 

such as dynamic encoding, dithering, and 

edge enhancement) can now be available 

using this type of architecture. Another 

example is the ability to assign cache memory 

resourced for a single instance. Expanding the 

amount of on-cache memory and allowing 

large block fetch movements can optimize the 

interaction between CPUs and GPUs, but 

optimization can differ depending on the size 

of the picture [1]. 

 

     Lastly, in a software/general server-based 

environment, more than one instance can now 

be invoked to handle a task. A “split and 

stitch” process could use the multiple 

instances to split the content up, process each 

section in parallel, then reassemble the 

compressed stream [See Fig. 4]. This can be 

helpful when dealing with near time or JIT 

content workflows. 

 

 
Figure 4: Split & Stitch Workflow 

 

     With a more actively managed 

orchestration of a workflow, there exist many 

yet-to-be-explored advantages that may be 

useful for content transcoding workflows 

using software on general-purpose servers.  It 

does, however, require changes in traditional 

content workflows. 

 

DESIGNING CONTENT WORKFLOWS FOR 

THE CLOUD 
 

A. Adjusting Traditional Content Workflows 
 

     A traditional approach in transcoding is to 

make use of “hot folders” to process content 

in each step of the workflow [See Fig. 5]. 

Basically, content and/or metadata is put into 

a storage folder. The transcoding operation 

would then see the content and start 

processing it. At the end of the task, it places 

the content in an output folder, which then 

may act as an input folder for another task. 
 

 

 

 
Figure 5: Hot Folder Workflow 

 

     There are several items to be aware of 

when using hot folders: 

 

 Content needs to be processed in the same 

way (issues arise when the content gets 

placed in the wrong folder) 

 Content needs to be complete before a 

task is started 

 It is difficult to indicate priority, and thus 

harder to adjust the workflow because of 

priority 

 Resources can idle, due to empty folders, 

making it all the more difficult to share 

resources 

 

     An alternative approach is to associate 

tasks with the content as a “job”. In this sense, 

the content is acted upon, rather than placed in 

a folder. The transcoding instance is not 

designed to do a dedicated set of tasks, but 

instead looks to see what task needs to happen 

on a piece content at the moment. This is 

similar to the use of a general-purpose server 

rather than a dedicated hardware device. With 

an associated ID and metadata (such as due 

date, aspect ratio, etc.) , the concept of a job 

can be a powerful concept and can enable: 

 

 Workflows that adjust to content 

 Reduction of storage 



 

 Scheduling of resources even before 

content arrives 

 Prioritizing workflow to either handle 

voluminous or bursty traffic 

 Reducing transcoding resources when not 

needed and applying them to other cloud 

tasks 

 

Additionally, another change that needs to 

be made to improve adaptability to cloud 

and data is to break down tasks into more 

atomic units. Instead of just transcode, it 

can be broken down further into 

operations such as: 

 

 Job verification 

 Schedule 

 Unwrap 

 Verification (syntax, file size, semantic) 

 Baseband processing (e.g. Cropping, 

Scaling, prefiltering) 

 Decode 

 Watermark, Fingerprint 

 Encode 

 Delete 

 Wrapping, Distribution 

 

     Each of these tasks has their own 

combination of resources and can vary in 

complexity and time-to-finish. These three 

factors may not be deterministic, but can be 

bounded. These tasks can be combined in 

different manners to adjust the workflow to 

the types of source content, types of job, 

available resources, and time constraints. 

Creating smaller task modules and using a job 

workflow will allow better processing in the 

cloud in a resource optimized way. 
 

B. Orchestrating Workflows Using A 

Transcoding Resource Manager 
 

     In order for a virtualized software 

transcoding instance to operate in a cloud 

infrastructure, the following are required: A 

balance of resources, network bandwidth 

demands, and timely output volume of assets. 

In order to keep these three aspects in balance, 

while exploiting the advantages of non-

dedicated, general-purpose resources, the 

concept of a transcoder resource manager 

needs to exist [See Fig. 6].  This is more than 

just a workflow manager, because it balances 

server resources, storage, and bandwidth in a 

scheduled manner. 
 

 
Figure 6: Workflow Using a Transcoder 

Resource Manager 

     The transcoder resource manager  

determines when and where an instance(s) 

will be created to address a job and when that 

instance will be destroyed/taken down. It will 

consider what server(s) to use and where to 

locate storage. It will schedule jobs based 

upon priority, type of content workflow and 

estimated time to completion (JIT, Near-

Time, Catalog, Assembly). It will also ensure 

that jobs will be done agnostic to any types of 

equipment failures. 

 

     Some of the decisions that the transcoder 

resource manager could make can be 

exemplified by a mezzanine workflow to 

create a UHD-1  output as well as a set of 

MBR (Multi-Bitrate) streams: 

 

 Determine how instances can exist at 

site(s) closest to the content mezzanine 

 Verify source characteristics through 

metadata and syntax validation 

 Create an instance to convert color gamut 

from BT 2020 to Rec 709 

 Convert 10-bit input into an 8-bit version 



 

 Split content into 5 sections and create 30 

instances to process each section, for both 

4K and MBR outputs 

 Determine task assignment on servers 

using CPU utilization as a guideline 

 Record linear programming 

 Index file generation 

 Manifest generation 

 CDN distribution 

 Destroy task instances and copies 

 

OPERATIONAL IMPACTS  
 

     The basic building blocks for cloud 

infrastructure (computing, networking, 

storage) need to support the maximum 

performance needs of individual tasks for 

virtualized software transcoding. Cloud-based 

software and virtualized transcoding 

platforms will also impose unique operational 

requirements for the service providers. 

 

     These may include: (1) Capacity planning 

of compute and networking resources to 

enable simultaneous transcoding streams 

(dependent on types of services - linear, VOD, 

cDVR) and mode of transcoding (real-time, 

just-in-time); (2) Distribution topology of 

transcoding resources to national or regional 

data centers, based on attributes of source 

origination, network connectivity, national or 

local channels, and content delivery network;  

(3) Remote operational monitoring  of 

software transcoding configuration, usage, 

performance, and availability; (4) 

Redundancy with automatic failover; and, (5) 

Transcoding software upgrade strategy. 
 

CONCLUSION 
 

Shifting to cloud-based transcoding services 

will help address the ever-increasing demand 

for video services with flexible resources. As 

algorithms continue to be optimized for multi-

core architectures, and as networking 

bandwidth increases, and storage gets more 

accessible, cloud-based transcoding services 

can scale to meet the demand without scaling 

the costs in the same manner. Modification in 

the content workflows that are needed are: 1) 

implementing a job-based priority workflow, 

2) breaking down the transcoding processes 

into smaller, atomic tasks, and 3) creating a 

transcoding resource manager to coordinate 

tasks and distributed equipment resources.  

 

     This approach can open up vast new types 

of business and operational models, where 

transcoding resources can be leased rather 

than purchased, and used to off-load peak 

transcoding demands. Virtualized software 

transcoders can create a flexible transcoding 

process that will be needed as the types and 

volumes of content for linear, VoD, and 

cDVR services grow. 
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