
 Abstract 

     Providing a positive viewing experience is 

critical for content owners relying on 

advertising and subscription-based revenue 

models to capitalize on the opportunity 

present in online video. However, with more 

viewers turning to online sources for 

consumption, understanding the quality of 

experience (QoE) and providing an optimal 

QoE becomes more critical. In this paper, we 

will discuss a possible online video 

predictive model for improving QoE using 

global intelligence extracted from analyzing 

billions of streams in real time utilizing a big 

data processing platform. While predictive 

modeling has been used in conjunction with 

big data to analyze historical and current 

trends for countless other disciplines, its 

application in digital media delivery has not 

yet been explored. Our research shows that 

on-line predictive modeling can provide 

tremendous value to those looking to 

monetize and enhance the viewer experience. 

 

INTRODUCTION 

     Online video streaming is one of the most 

important applications on the Internet. 

Today, more than 57% of Internet traffic is 

video and the percentage is predicted to reach 

69% in 2017 [1]. At the same time, users are 

demanding better and higher quality video 

(e.g. HD and Ultra-HD or 4K video) 

[2][3][4]. Ensuring video Quality of 

Experience (QoE) is becoming, and will 

continue to be, a challenge for both video 

content publishers and service providers. 

 

     Existing protocols that enable Internet 

video streaming assume two fixed end points 

(e.g., a video server and a client streaming 

the video) and varying resource availability 

between, or at, the two end points. The key 

mechanism to achieve better quality is to 

rapidly adapt or react to congestion and/or 

apply changes in resource availability along 

the path or at the end points. One example of 

this approach is the set of adaptive bitrate 

algorithms that have been implemented in 

many video players, often highly optimized 

for specific streaming protocols. While these 

adaptive solutions have served us well in the 

past, they become sub-optimal as video 

streaming services become more 

sophisticated and new opportunities emerge. 

Towards a Video Software-Defined Network 

     Most scalable and reliable Internet video 

streaming services have many control knobs 

for adjusting video playback quality across 

different layers in the network stack that call 

for cross-layer optimizations. For example, 

many video services are implemented using 

multiple servers, typically distributed 

geographically, e.g., Content Delivery 

Networks (CDNs). For each video session, a 

video player can select one of many possible 

servers from which to start streaming. If the 

duration of the video session is long, it is 

possible to switch servers during the lifetime 

of the session. The control plane is further 

complicated by recent trends in content 

providers utilizing multiple CDNs [5] and/or 

CDN federations [6]. In addition to 

streaming server selection, for an adaptive 

bitrate video streaming protocol, the initial 

bitrate needs to be selected and the player 

needs to continuously adapt the bitrate during 

the video playback. We argue that by 

leveraging and extending the recently 

proposed Software-Defined Networking 

(SDN) approach [7][20], it may be feasible to 

select the best Internet route on a per-video-

session basis. Furthermore, we will not be 

surprised if other knobs, such as video 
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encoding profiles [8], client or server initial 

TCP window size [9], or even the transport 

protocol itself, can be opened up for control.  

The Case for a Data-Driven Predictive Model 

     The new opportunities call for cross-layer 

optimizations where the decisions involving 

different control knobs need to be considered 

together, instead of separately. This causes 

the decision space to grow exponentially, 

making it extremely difficult for a reactive 

protocol to do the best possible job. Indeed, it 

will take a long time for such a protocol to 

converge to a good decision. Next, we briefly 

discuss the challenges faced by existing 

protocols. 

     Typically, these protocols use static initial 

configuration parameters that are often sub-

optimal. For example, adaptive streaming 

protocols usually start with a statically 

configured bitrate. If this bitrate is too low, 

the protocol might not even be able to reach 

the optimal rate by the time the video has 

ended (e.g., for a 30s or 60s news clip). 

Additionally, such pre-configured bitrate 

may be sub-optimal during periods of 

congestion or compromised bandwidth.    

     Even after an initial decision is made, 

when these protocols react, they don’t always 

make the optimal decisions, which may 

further impact user experience. For example, 

in case of congestion, an adaptive bitrate 

protocol may switch up to a bitrate that 

cannot be sustained, and, as a result, the user 

may experience re-buffering.    

     In this paper, we make three arguments. 

First, given the fundamental limitations of 

reactive approaches, we argue for an 

alternative predictive approach, which aims 

to accurately predict the outcome of making 

a particular choice, e.g., will a stream be able 

to sustain a particular bitrate? In theory, a 

perfect prediction would allow protocols to 

use “optimal” configuration parameters and 

make “optimal” decisions. For example, it 

would be possible to exactly pick the largest 

sustainable bitrate for a video stream at start 

time.     

     Second, in order to accurately predict the 

outcome of a given choice, one may be 

tempted to use an analytical approach to 

model the environment, the streamer, the 

network, or some combination thereof. 

However, we believe this is infeasible due to 

the huge complexity of the delivery 

ecosystem, and this is also unnecessary. We 

instead argue for a data-driven empirical 

approach to leverage the information 

available from other players, streams or 

connections, i.e., use the performance 

experienced by other “similar” sessions to 

predict the performance for a given session. 

For example, if sessions located at some 

organization can sustain 2Mbps on average 

when streaming from a CDN, then it’s likely 

that a new session from the same 

organization will be also able to stream at 

2Mbps from the same CDN.     

A Cloud-Based Big Data Solution: V-SDN 

     To this end, we propose a global control 

plane architecture – or Video SDN (V-SDN) 

– that continuously collects data from various 

sources, e.g., the quality of current and 

historical video sessions, and uses this 

information to maximize quality of other 

sessions. There are several challenges to 

implement such a system. First, we need an 

Internet-scale solution. To provide some 

perspective, we collect data from over 4 

billion streams per month, and at each point 

in time, we are collecting data from up to 2 

million concurrent streams. When applying 

to all Internet videos, that number becomes at 

least one order of magnitude bigger. Second, 

we need to process this information and 

make decisions in real time, i.e., milliseconds 

or sub-millisecond response time. Third, to 

make the best decisions, we need on-line 

prediction models to accurately model the 

session performance as new data is 

continuously collected. 



     We present the design and early 

experience with deploying such a control 

plane architecture, called video Global 

Optimization (GO). Conviva has built a 

cloud-based data platform using a data hub 

architecture [10], where data ingested from 

different sources are stored in a distributed 

file system, and different tools built on top of 

the data provide batch processing, stream 

processing, search, graph computation, ad-

hoc analytical querying, time-series 

analytics, and statistical analytics 

computation. The data platform is designed 

to be distributed, horizontally scalable, and 

highly available. With this data platform, 

applications such as GO do not need to worry 

about the distributed nature of the system and 

are able to explore the data more freely. GO 

uses the quality-related information (e.g., 

current bitrate, re-buffering rates, start time, 

etc.) which is continuously collected from 

each streaming video client. Next, GO 

processes the quality information in real 

time, and, based on this information, 

provides hints to clients about the best bitrate 

or server to start with or switch to. For ease 

of deployment in today’s Internet ecosystem, 

we make two simplifying assumptions. First, 

for a given session, GO selects the server and 

Internet path at the CDN granularity, instead 

of server granularity. Second, GO currently 

makes decisions at the start of a video 

session, and not in the middle of the session. 

These simplifying assumptions reduce both 

the frequency and the number of decisions 

GO needs to make. Despite these restrictions, 

our experience with deploying GO to 

optimize video streaming across several 

video sites shows that it is a highly 

advantageous step towards a fully featured 

global control plane. 

     In particular, due to the flexibility of our 

data platform architecture, it would be easy 

to extend GO to handle additional data 

sources, to make new types of decisions 

(e.g., select an encoding format), or to 

implement different algorithms. 

GO System Overview 

     As shown in Figure 1, GO consists of two 

main components: (i) a backend that collects 

and processes the information about the 

video quality across all clients, and (ii) a 

client library that collects quality information 

at each client and sends it back to the 

backend. In particular, the client library 

monitors the states of player and network 

condition, summarizes them in the form of 

quality samples, and sends these samples 

back to the GO backend. 

     The GO backend uses the streaming 

capability of the data platform to process the 

quality samples received from clients in real 

time, and predict the quality outcomes of 

future sessions for each possible decision. 

The GO system makes two decisions for 

each session: the initial or starting bitrate 

(most videos today are encoded at multiple 

resolutions), and the initial CDN to stream 

the content from (many content providers 

today are on or moving towards multi-CDN 

setup). The initial CDN and bitrate are 

chosen from a pre-determined set of options 

and they can be changed at any point during 

a session. Note that to play a video that is 

encoded at n different bitrates and stored on 

m CDNs, there are m × n options to chose 

from. 
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Figure 1: Go System overview 



     To pick one of these options, GO predicts 

the quality metric for each option, and then 

picks the one that corresponds to the highest 

quality. In particular, GO uses real-time, 

quality-related information from every client 

currently streaming video to predict the 

quality of another user, and uses this 

prediction to select the initial bitrate and 

CDN for a new user. 

Quality Samples 

     As explained above, the client library 

collects various pieces of quality 

information, summarizes this information 

into quality samples, and sends these samples 

to the GO backend. More precisely, a quality 

sample contains a set of quality 

measurements and attributes. Based on the 

quality measurements, GO computes a set of 

quality metrics. In this paper, we focus on 

four industry-standard video quality metrics 

that have been shown to impact user’s 

engagement [11][5]: 

1. Buffering ratio: The percentage of time a 

session spends in buffering state, i.e., waiting 

for the player’s buffer to replenish with 

enough data to continue the playback. 

 2. Join time: The time it takes to start 

playing the video from the time the user 

clicks the “play” button. 

 3. Average bitrate: Many of today’s video 

players support adaptive bitrate switching to 

effectively react to changes in the bandwidth 

availability. The average bitrate of a session 

is simply the time-weighted average of the 

bitrates used in a given session. 

4. Video start failures: Some sessions fail to 

start playing due to various reasons, 

including content unavailability, or CDN 

server overload. 

     In addition, a quality sample contains a 

Table 1: Number of unique values for various session attributes 

Name Description Number of Unique Values 

ASN The Autonomous System (AS) 

Number that the client IP 

belongs to 

15K from multiple countries 

Video asset The video asset being streamed 80K 

 

Content provider 

(site) 

 

The video site providing the 

content 

279 

 

Initial CDN The CDN that the video session 

starts with 

19 including ISP, commercial, in-

house 

Initial bitrate The bitrate that the video session 

starts with 

15K video assets with multiple starting 

bitrates 

Connection type Type of last-mile connectivity 7 including WWAN, DSL, fiber-to-

home 



large number of client and video session 

attributes. Table 1 summarizes some 

information about these attributes.  Results 

are derived from quality samples from over 

800 million sessions or views (both 

successful and failed) over a one-month 

period. 

  

CHALLENGES 

     Before we delve into solutions, we first 

discuss some of the challenges to building 

such a video quality prediction system. First, 

we describe the scalability challenges and 

then we discuss the algorithmic challenges in 

managing prediction errors.  

Internet-Level Scalability  

     A global intelligence system needs to be 

scalable in order to make a large number of 

real-time decisions. This is especially true 

given the combinatorial nature of the session 

features, i.e., the number of feature 

combinations increases exponentially with 

number of base features. At the same time, 

the decisions need to be made in an 

extremely low (sub millisecond) constant 

time so that the decision making process 

doesn’t adversely affect the video session.  

Managing Prediction Error 

     Any prediction has error. The natural 

question is: where do errors come from and 

how do we manage them? We roughly 

follow the decomposition of prediction error 

developed in [12], specializing it to our 

setting. In quality prediction, there are four 

sources of prediction error:  

1) Estimation error caused by limited data: 

All things being equal, more data will give a 

more accurate prediction because predictions 

are less impacted by random fluctuations in 

the available data. Given a large number of 

attributes and the combinatorial nature of the 

attributes (the number of partitions grow 

exponentially with more attributes), 

estimation error can be a serious problem in 

practice. 

2) Bias due to missing or unused 

information: The bias occurs when one does 

not observe (or use) an attribute that is 

important for prediction. Bias is not 

alleviated by gathering data from more 

sessions, but by gathering more attributes 

from each session. There is a fundamental 

tradeoff between estimation error and bias 

that we need to address: more features reduce 

bias but also reduce the number of samples 

within each feature set and potentially 

increase estimation error if not designed 

carefully. On the other hand, the common 

approach to handle estimation error is to 

increase number of samples by aggregation, 

thus increasing bias.  

3) Unavailability of recent data: In a practical 

system, there are delays in measuring, 

sending and processing quality samples. If 

conditions change rapidly, there may be no 

quality samples sufficiently close to the 

session under prediction. This is an extreme 

example of estimation error. In this case it 

may be necessary to model the evolution of 

the video ecosystem over time in order to 

extrapolate to the current time. Figure 4 

shows per-minute quality variability. It 

shows that even with sufficient data, the 

mean value of quality samples belonging to 

sessions in the same partition could vary 

significantly. This clearly indicates that any 

practical algorithm has to be running in real 

time (on the order of one minute or less). 

4) Noise: Outcomes may be affected by non-

deterministic inputs that could not reasonably 

be observed or predicted by any system. For 

example, performance may be affected by 

exponential back-off at the data link layer, by 

the congestion generated by cross traffic at 

the network layer, or by a randomized 

algorithm somewhere in the networking 

stack. Though prediction error induced by 

such factors technically falls under the 



category of bias, it is more useful to think of 

it as noise. Noise implies that some degree of 

prediction error is inevitable. 

 

ALGORITHM 

     In this section, we present a practical 

algorithm that addresses the challenges 

presented in previous section.  

     The tradeoff between estimation error and 

bias naturally leads us to consider a class of 

algorithms that compute average quality 

outcomes for partitions of sessions under 

different feature sets, and then dynamically 

chooses the feature set that seems to work 

well for a given session. We propose the 

following basic structure for the algorithm. 

The algorithm chooses a set of features 

offline based on analysis. Then the algorithm 

starts collecting quality metrics for all the 

feature sets. Based on the quality metrics 

collected, each feature set will be given a 

weight so that the weights reflect statistical 

properties of the feature set and are thus 

updated when new quality samples are 

collected. Finally, when receiving a new 

session, we estimate the performance for 

each available decision using a weighted 

sum. Intuitively, the algorithm works as 

follows: for a given session, we look at the 

quality metrics of all the sessions that match 

this session exactly. If we have enough data 

and the metrics are statistically stable, the 

decision will be mostly based on that. 

Otherwise, we will have to remove a feature 

and look for quality metrics with similar 

sessions, etc. 

     The next question then becomes how to 

design a weighting scheme to balance 

between estimation error and bias to 

minimize overall prediction error.  

     George et al [13] considered this problem 

and proposed an algorithm called WIMSE 

(short for Weighted Inverse Mean Squared 

Error). As the name suggests, the weights wi 

are chosen to be the inverse of an estimate of 

the mean squared error (MSE). Inverse-MSE 

weighting has the following desirable 

property: If the mean quality pi of each group 

is statistically independent and the mean 

squared error is estimated exactly, then the 

resulting prediction is an optimal estimator in 

the sense that it has the minimal overall 

prediction error among all samples drawn 

from the same distribution [13]. While in 

practice neither condition is met, George et al 

have found that WIMSE can nevertheless 

work well in most cases. 

     The basic algorithm still faces other 

practical challenges. However, due to space 

limitation in this paper, we concentrate on 

only the major challenges the algorithm 

faces. 

 

DEPLOYMENT 

     We leverage recent advances in data 

systems to build our data platform, around 

Hadoop [14] and the Berkeley Data 

Analytics Stack (BDAS) ecosystems [16]. 

From a high-level design, we use HDFS as 

our primary storage layer and Spark as our 

primary computation engine. We also use 

other tools to provide both HA (high 

availability) and data processing abstraction 

such as batching (Spark [15]), streaming 

(Streaming Spark [15]), search (Solr [17]), 

analytical querying (Shark [18]), statistical 

analytics (R [19]), etc.  

     We implemented the GO system on top of 

our data platform using the streaming 

capability of the platform to train the model 

and produce decision tables every minute. 

The decision tables are then sent to a number 

of decision makers distributed across 

multiple locations. Finally, when a query 

comes into a decision maker, it runs the 

algorithm using the decision table and 

responds within milliseconds.  



     The GO system is currently deployed with 

multiple premium content publishers. 

However, there are several practical 

difficulties of evaluating the performance of 

GO in production deployment environments. 

First, most publishers do not want to perform 

A/B testing when they understand that the 

performance of some of the streams may not 

be optimal when they are grouped by the 

non-optimized version of the algorithm. 

Second, with all publishers, there are usually 

additional business considerations beyond 

the goal of optimizing the QoE of the video 

streams. For example, when using multiple 

CDNs, a publisher could get a lower price 

from a particular CDN if it would allocate 

more than a certain percentage of its total 

traffic to the CDN. This CDN allocation 

policy would put additional constraints on 

the GO optimization algorithm. Consider a 

scenario where a publisher has three CDNs 

X, Y, and Z, and has a minimum committed 

usage percentage on X and Y. This would 

mean that even if CDN Z was the best 

performing CDN based on the prediction 

algorithm, beyond certain percentage of 

traffic, no additional streams would be 

allocated to it. 

     

Buffering Ratio and Average Bitrate: In 

Figure 2, we show the percentage of 

improvement of GO over the baseline 

(randomized decisions) with two 

performance metrics: buffering ratio and 

average bitrate. In particular, for buffering 

ratio, we show the percentage of reduction of 

buffering ratio for all sessions served by the 

GO algorithm in each day as compared to all 

sessions served by the baseline algorithm on 

the same day; for average bitrate, we show 

the percentage of increase of average bitrate 

over the entire session duration for all 

sessions served by the GO algorithm in each 

day as compared to all sessions served by the 

baseline on the same day. We present the 

comparison over a continuous time period of 

10 days. There are several points worth 

noting. First, both metrics are improved 

simultaneously with GO as compared to the 

baseline. In contrast, with normal adaptive 

bitrate protocols without special 

optimization, the improvement of one metric 

usually results in the deterioration of the 

other. For example, the reduction of the 

buffering ratio usually comes together with 

the reduction of the average bitrate also. 

With GO, both metrics are improved 

simultaneously. Second, the performance 

improvement varies daily. The most likely 

explanation is that it is due to the CDN 

performance variation. To understand this 

better, we compare the performance of all 

sessions under GO and the performance of all 

sessions on each of the three CDNs under the 

baseline algorithm. This is shown in Figures 

3 and 4 respectively with buffering ratio and 

Figure 2: Performance improvement over time 

compared to baseline algorithm 

Figure 3: Buffering ratio for different CDNs at 

different points in time, illustrates CDN 

performance variability 

Figure 4: Average bitrate for different CDNs 

at different points in time, demonstrates very 

much the same phenomenon as Figure 2 
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average bitrate as performance metrics 

respectively. For each figure, we show the 

comparison in two separate days. Some 

additional points to note: first, the 

performances of sessions for different CDNs 

under the baseline do vary, with respect to 

both buffering ratio and average bitrate. 

Second, the sessions under GO perform 

better than the sessions for even the best of 

the three CDNs. This suggests that GO is not 

only looking for the best CDN on average, 

but also differentiates CDN performance in 

finer granular partition across time and space.  

In addition, if one compares the relative 

performance for each individual CDN, the 

ranking varies between the two days. In 

particular, with respect to the buffering ratio, 

CDN3 is the best on Dec 23, but CDN1 is the 

best on Jan 9; with respect to the average 

bitrate, CDN3 is the best on both days.  

    Interaction with the adaptive bitrate 

protocol: Since GO in this deployment only 

selects the bitrate and CDN at the beginning 

of each session and the HLS protocol 

controls the bitrate adaptation for the 

duration of the session, we would like to 

understand how the initial selection decisions 

by GO impacts the future adaptation 

decisions made by HLS. The number of 

bitrate switches per session made is a good 

indicator of how closely GO is able to select 

the ideal bitrate for a session. A good initial 

selection would result in a lower number of 

bitrate switches in the future. Figure 5 shows 

the comparison between GO, a static 

selection policy (traditional initial bitrate 

selection algorithm) and an algorithm that 

selects the starting bitrate at random. As 

shown in the figure, GO outperforms either 

case. Also note that static selection is as bad 

as picking a bitrate at random! 

 

DISCUSSION 

     While our results look promising, the 

magnitude of the improvements may appear 

underwhelming. However, we believe that 

this is not due to the lack of potential of the 

approach, but it merely comes down to the 

inherent limitations that are typical to any 

first instantiation of a radical approach. In the 

remainder of this section, we consider some 

of these limitations which, when removed, 

will result in much higher improvements. 

     Mid-stream selection: Currently, GO 

makes decisions at the sessions’ start times. 

For a long session this may not be optimal, 

as, for example, the quality of the selected 

CDN may degrade during the session’s 

lifetime. We are adding the ability to make 

the decisions during the mid-stream, as well. 

Note that in this case, the prediction is 

equally important, as switching to a new 

CDN is not guaranteed to increase the 

quality, especially if the quality degradation 

is due to the last mile or due to the client 

inability to render at a high bitrate. 

     Leveraging network and CDN 

information: GO makes decisions based on 

client side information only. While clients 

provide the most accurate information 

regarding the quality experienced by users 

and at the final viewing stage, this 

information may not always be optimal when 

making decisions. The decision process can 

be considerably improved if GO were to 
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leverage information from other entities in 

the distribution ecosystem, including CDN 

servers, caches, switches and routers. Using 

such information, GO could significantly 

improve the prediction accuracy. For 

example, GO could learn much faster that a 

CDN server is overloaded by getting load 

information directly from that server than 

inferring this information from clients that 

experience quality issues when connected to 

that server. 

     Finer grain selection: Currently, GO 

selects the resource at the CDN granularity. 

This means that GO does not do much if the 

CDN redirects the client based on its location 

(e.g., IP address) to a set of congested 

servers. However, if the client were able to 

specify the servers to stream from, GO could 

avoid the overloaded servers and 

dramatically increase the quality. We believe 

that we will soon have the ability to perform 

such fine grain selection, as CDNs are 

incentivized to expose such information to 

clients. Indeed, a CDN operator will prefer 

that a quality-impacted client move to other 

servers in the same CDN rather than migrate 

to a different CDN. Furthermore, an ISP 

CDN that also runs its own software on set-

top boxes or other user devices would be in 

the perfect position to run a GO-like 

algorithm that makes decisions at server 

granularity. 

 

 

CONCLUSION 

     As the Internet infrastructure becomes 

more complex, the potential number of 

congestion and failure points will only 

increase. In this paper, we have shown that 

despite this increasing complexity, a 

predictive model for QoE, leveraging an 

Internet scale control plane architecture 

(GO), gives online video providers the ability 

to deliver an optimal viewing experience for 

their content. With new SDN technologies 

being developed and deployed to expand the 

capabilities of devices within the video 

ecosystem, we believe that a GO-like 

solution will be able to make even more 

granular optimizations and better control the 

delivery environment. Content publishers 

and service providers are in an excellent 

position to utilize a V-SDN architecture, 

such as GO, to ensure the integrity of their 

business as the industry moves to an Internet 

TV model. 
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