
APPLICATION OF POLICY BASED INDEXES AND UNIFIED CACHING FOR

CONTENT DELIVERY

 Andrey Kisel

 Alcatel-Lucent

 Abstract

 Caching technologies are used to improve

quality of experience while controlling transit

and transport costs. Two common caching

technologies are considered transparent

caching (TC) and on-net content delivery

network (CDN). We illustrate cache

avoidance, analyze and model two common

approaches - content hash indexes and policy

based indexes - to minimize the impact. We

show how the use of policy based indexes and

applying advanced features of IP routing can

be used to merge on-net CDNs and TC

together into a single unified caching system

with superior and quantifiable improvement

in cache efficiency, while providing resilience

and simplifying operations.

INTRODUCTION

 The content industry is being reshaped by

exponential video traffic growth, rapid

proliferation of connected devices and

delivery formats, and surging consumer

demand for video from many different online

sources. To stay competitive, MSOs need

solutions that can cost effectively deliver pay

TV content and Internet traffic with high

quality of experience while optimizing transit

and peering costs.

 The majority of the growing Internet traffic

originates from outside of MSO’s networks

and from Content Providers with whom they

do not have business agreements to deliver

content. Internet traffic is diverse by nature,

and while video is the largest type by volume,

software updates and Web traffic constitute

substantial proportions.

 MSOs are using caching technologies to

improve quality of experience while

controlling delivery costs for own video

services and Internet traffic. They use

transparent caching for unmanaged over-the-

top Internet content and on-net content

delivery network for managed or premium

content they own or distribute for partners.

Currently both solutions operate

independently from each other.

 There are several fundamental challenges

that MSOs are facing with unmanaged OTT

content: cache avoidance, a technique used by

content providers to prevent MSOs from

caching their content, different traffic types

that needs to be cached, and maintaining high

network resilience where caching is deployed.

In this paper, we illustrate and model the

impact of cache avoidance on TC and

introduce two common approaches - content

hash indexes and policy based indexes - to

minimize this impact. Using traffic data from

field trials and through numeric modeling we

compare the two approaches and show how

the use of policy based indexes improves

cache efficiency and reduces latency for any

traffic type. We then discuss application of

advanced features of IP routing to resiliently

deploy TC into greenfield and existing on-net

CDNs creating a single unified caching

system with improved resilience and

simplified operations.

IMPROVING CACHE EFFICIENCY

Cache Avoidance

 Caching is intended to provide distributed

and scalable content delivery from inside

MSO networks, optimizing network savings

while maintaining a consistently high QoE.

Cache efficiency is typically measured in

cache-hit rate, the ratio of Bytes delivered

form cache storage versus total Bytes

delivered .

⁄ (1)

HTTP cache control headers such as “Cache-

Control", "Etag", "Date", "Last-Modified" are

commonly used to improve cache efficiency

and are well defined by RFC 2616. However,

some content providers do not make their

content objects easy to cache by either

obfuscating object URLs, using unique object

URLs for the same objects, setting incorrect

values for cache control headers such as

“Cache-Control", "Etag", "Date", "Last-

Modified" or a combination of these methods,

even if objects are cacheable by nature.

While there may be valid reasons for using

such approach, such as load balancing, often

there are other considerations such as

promoting deployment of content provider’s

own caching inside MSOs networks.

Regardless of the reason, this approach is

known as cache avoidance, and there are two

broad types of cache avoidance based on

using semi-dynamic or fully dynamic URLs.

 Semi-dynamic URLs are content URLs

containing different object requests for the

same content object. Different hostnames

may also be used, for example, for load-

balancing. A common feature of semi-

dynamic URLs is extensive use of dynamic

query string parameters and random

parameters attached to object URLs to make it

unique, even if the object name is the same.

Semi-dynamic URLs make traditional on-net

CDN caching un-efficient because multiple

URLs point to the same content. An example

of a semi-dynamic URL from NetflixTM is

presented below:

http://31.55.163.113/737473630.ismv/range/3

4270098-

34927096?c=gb&n=25127&v=3&e=1391197

153&t=2EWCIyTIS201F4kw3AAyYWfUhb8

&d=silverlight&p=5.rjKPKTOOlAKs2xPbIC

Bh007uSde_EIHN1XbhqYSxeAs&random=9

76648079 (2)

 The URL includes ‘random’ query string

parameter making content request unique

among different users requesting the same

video object. In other approaches object

name, ‘737473630.ismv‘ in our example,

may be unique for the same video objects, and

the video object may be only identifiable by

static query string parameters inside semi-

dynamic URL.

 Fully dynamic URLs completely randomize

object name and remove query string

parameters, a combination of which may

uniquely identify video object, form object

URLs. For example, two URLs below

requested the same object:

http://www846.megavideo.com/files/d008f8c

759a4f4b3f07ccef7ea7588a4/

http://www763.megavideo.com/files/f66f936f

7fc39f1bb9524f49c5f54184/ (3)

Caching Policy and Content Hash Indexes

 In order to improve TC two main

approaches have been developed: content

policy index (content policies) and content

hash index (content hashing). Content policy

is a set of TC instructions how to group

similar hostnames and identify the same

content objects being delivered from each

hostname using different semi-dynamic

URLs. Essentially the policy defines parts of a

URL that can be omitted and parts that shall

be used for unique content identification -

cache index. Content policy relies on presence

of unique static parts or parameters inside

each URL identifying content object. For

example, a policy to cache semi-dynamic

URLs (2) is illustrated below:

[policy-netflix]

match url regex http://([0-9]{1,3}\.){3}[0-

9]{1,3}/(?<chunk>\d+\.ismv)\?c=\w+&n=\d+

&v=\d+&e=\d+&t=(?<t>[\w|-

]+)&d=(?<device>\w+)&p=5\.(?<p>[\w|-]+)

cache_index = netflix-$e-$chunk-$device (4)

 The policy effectively defines that TC can

use a combination of chunk name, device

name and ‘e’ parameter to uniquely identify

content, omitting the remaining of the URL.

Content policy can identify content objects

without waiting for any response from the

Origin server, and therefore content delivery

can start faster improve time to first byte ,

a time between sending request and receiving

the first byte of response. Content policies can

efficiently cache objects identified by semi-

dynamic URLs.

 Alternative approach uses content hash

indexes. Content hash is a hash computed

form the first Bytes of object, and used to

uniquely identify the complete object. In order

to compute the hash, TC passes original

object URL to the Origin, waits for the object

delivery to start, computes hash of the first

Bytes, and checks whether the hash matches

hashes for content objects already stored in

the in the cache. If the match is found, TC

takes over object delivery and disconnects the

Origin. Typically the size of data to compute

hash is measured in the number of IP packets,

for example, often 10 IP packets are used to

identify video objects. Multiple hashing

algorithms can be utilized, for example, MD5

(RFC1321) or SHA-1 (RFC3174) is often

used.

 Content hash indexes can efficiently cache

content identified by both semi-dynamic and

fully-dynamic URL. However, the proportion

of fully dynamic URLs in the total traffic

volume observed in a field trial is negligible,

as discussed below, and they are considered

instead an alternative to content policies when

caching content identified by semi-dynamic

URLs, rather then a supplement. Content

hash indexes cannot improve because TC

has to wait for the Origin’s response, and are

less efficient in caching smaller object where

a larger proportion of the object needs to be

used for hash computation and therefore

received from the Origin. We will compare

efficiency of both approaches in the next

section using object distribution inside traffic

volume obtained from field trial.

Cache Efficiency

 We will use two characteristics when

analyzing cache efficiency: (1) and –

is the number of bytes required to compute

hash index and is defined in (1).

 (

⁄) (5)

 Figure 1 illustrates percentage of video

traffic excluded form caching if content hash

indexes are used for Bytes, (10

IP packet, 1500 B each), 2s Smooth streaming

and 10 sec HLS segments.

Figure 1. Video traffic excluded from

caching.

 As illustrated on Figure 1 more traffic is

excluded from caching for lower video

bitrates, decreasing cache efficiency for

networks with such traffic profile, for

example, serving large number of mobile

clients.

 While Figure 1 illustrates theoretical

impact of content hashing on HTTP Adaptive

streaming, to consider practical impact on all

Internet traffic requires introduction of object

distribution. For simplicity of practical

simulations we split object sizes into bands,

and define object distribution as

∑

 (6) and

∑

 (7),

where is a percentage of objects inside i-
th band in relation to total number of objects,

 is a percentage of traffic inside i-th band

in relation to total traffic volume - number

of objects inside i-th band, -size of all

objects inside i-th band and - the number of

0

5

10

15

20

25

256 512 1024 2048

%

Content Bitrate, kbps

Video Traffic Excluded from Caching
BH 15K (10 IP packets, 1500 B in IP packet)

Smooth segment 2 sec, HLS 10 sec

Smooth

HLS

bands. Figure 2 illustrates observed object

distribution for a large NAR ISP.

Figure 2. Object distribution for Internet

(port:80) traffic.

Figure 3. Increase in cacheable traffic.

 On the next step let’s consider gains -

 for object distribution presented in

Figure 2. Figure 3 illustrates gains in the

percentage of cacheable traffic for content

0

10

20

30

40

50

60

OTT Traffic
Object Distribution

%, Absolute

%, Volume

0

10

20

30

40

50

60

70

80

90

100

0-1k 1-3k 3-10k 10-32k 32-100k 100-300k 300k-1M 1M-3M

OTT Traffic
Increase in Cacheable Traffic

Aggregated Increase 13.01% of Total Volume

%, Volume

policies for each of object bands, and

aggregated gain across all bands factoring

into account relative contribution of traffic

inside each band into total the volume

(illustrated on Figure 2).

 When calculating aggregated gain we

applied unified object distribution inside each

band for simplicity.

 {
 ̅̅ ̅̅

(̅̅ ̅̅⁄) ̅̅ ̅̅
 (8),

where ̅̅ ̅̅ is the average object size for i-th

band, is introduced in (5)

(

)∑ (9),

where is introduced in (7) and is

introduced in (8).

 As illustrated by Figure 3 overall increase

in cacheable traffic for object distribution in

Figure 2 is 13%. The increase depends on

object distribution and will be larger for

bigger proportion of smaller objects.

Figures 2 and 3 show two interesting trends.

First, in terms of object numbers, the majority

of objects are small, therefore any caching

solution that can deliver small objects with

better and lesser latency would improve

QoE. Policy based indexes reduce for

over 80% of traffic objects more then content

hashing. Second, in terms of traffic volume,

larger objects dominate traffic and make main

contribution to , however, the proportion

of smaller objects (e.g. below 100 kB) is non-

negligible.

 So far, we considered the gains in

cacheable traffic by using policy indexes

instead of content hash indexes. Let’s

consider impact of using content hashing on

cache hit rate . is a linear function of

 , and if portion of the traffic is excluded

from caching, and will linearly

decrease as illustrated on Figure 4. The rate of

decrease will be higher for larger potentially

achievable cache , therefore content hash

indexes impact most the better performing

caching systems.

 (

 ⁄) (10),

where cache hit rate when policy

indexes are used, percentage of traffic

excluded from caching.

 Content policies offer noticeable

Figure 4. Cache hit rate

decrease.improvement both in increased

volume of cacheable traffic and in cache-hit

rates. The improvement is dependent on the

traffic profile inside ISP’s network. Traffic

profile from a large NAR ISP yield 13%

improvement in cacheable traffic and derived

6% gains in cache hit rate. Another important

characteristic, often overlooked when

analyzing transparent cache efficiency, is

caching of small objects and improved .

Content policies enable to improve for

80% of more objects, which otherwise would

have slipped through caching using content

hash indexes. While an argument can be made

that content hashing can cache objects

identifiable by fully dynamic URL, we have

not observed traffic with fully dynamic URL

among top 10 sites contributing over 80% of

traffic volume in the field trial, therefore on

their own content hashing is a weaker

alternative to content policies.

 Content policies can be configured to

initially contact Origin, similar to content

hashing, if, for example, preferred for

operational reasons. However, content

0

10

20

30

40

50

0 10 20 30 40 50 60
R

C
H

, %

PEXC, %

OTT Traffic
Decrease in Cache Hit Rate

Rch max=10%

Rch max=20%

Rch max=30%

Rch max=40%

Rch max=50%

policies allow initial contact with the Origin

to be made without initiating content delivery

by using ‘If-Modified-Since’ HTTP header,

preserving cache efficiency. While another

argument can be made about management of

content policies, we observed that content

policies are relatively static, and none of them

needed updates after initial tuning likely due

to fairly static format of content URLs used

by Content Providers. Moreover, policy

updates could be fully automated. Therefore

both arguments do not disprove superior

cache efficiency of content policies, or

introduce noticeable barriers against applying

content policies.

RESILIENT DEPLOYMENTS

Application of Policy Based Routing

 Traditional deployment of transparent

caching relies on using policy based routing

(PBR) to divert all or HTTP (port:80) traffic

to the cache. This approach places the cache

on data path, and therefore resilience is one of

the main considerations for MSOs. Load-

balancers and N+1 or N+N redundancy are

typically used for resilience, although at extra

costs and complexity. We will consider

alternative approaches using advanced

functions already available in IP routing. The

approaches rely on the ability of IP routing to

reroute traffic from failed caches using

conditional redirects, or ability to duplicate

traffic, letting the Origin deliver objects

instead of a failed cache. The approaches do

not require any modifications to the cache, for

example, adding additional protocols or

signaling.

 First approach is based on using

conditional redirects applied to policy based

routing. Figure 5 illustrates this approach

together with logical modifications of a

routing plain.

Figure 5. Resilience based on PBR with

conditional redirects.

 Let’s consider logical modification to the

routing plain for resilient handling of

subscriber traffic first. A redirect policy is

added to route traffic to the Destination IP of

the cache if Test Condition is passed. Test

Condition verifies cache availability, and

most of the routers can test ICMP ping, HTTP

GET or SNMP messages. Second, ip-filter1 is

created incorporating redirect policy and

filtering traffic passing Match Condition 1, for

example, match condition ‘protocol:TCP,

destination port:80’ would effectively

diverting to the cache only HTTP traffic that

it can potentially cache. Removing other

traffic types from the cache frees cache’s

resources for caching instead of analyzing and

returning without caching other traffic types.

Next, the ip-filter 1 needs to be applied to the

router port handling traffic from subscribers.

 Resilient handling of return traffic from the

Internet requires similar logical steps (Figure

5) with main differences that Match Condition

2 = protocol:TCP, source port:80 selects

HTTP traffic based on source port and the

new filter needs to be applied to the router

port handling return traffic from the Internet.

 In case of transparent cache failure, the

traffic is routed to the upper caching layers or

to the Origin; therefore they would deliver

more content until failed cache is restored.

Field simulations in a large NAR ISP network

showed that conditional redirects applied to

policy based routing did not cause any

noticeable network outage following

INTERNET

TRANSPARENT
CACHE

Content

Request

Content
SERVICE
ROUTER

1. redirect-policy
{Name, Destination IP, Test

Condition }

2. ip-filter 1

{Name, Match Condition 1,

Redirect Policy Name}
3. interface

{Name, Subnet, Router Port, IP

Filter 1}

From subscriber to Internet

From Internet to subscriber

1. ip-filter 2
{Name, Match Condition 2, Redirect

Policy Name}

2. interface

{Name, Subnet, Router Port, IP

Filter 2}

simulated cache failure, and from the user

experience, there were no disruptions to

unicast streaming services from Amazon and

YouTube, no disruption in constant ping, or in

ability to surf Web. Therefore, policy based

routing with conditional redirects offered a

robust and cost efficient deployment for

transparent caching without need to introduce

extra network functions, for example, load-

balancers or N+1/N+N redundancy.

Application of Traffic Mirroring

 Let us consider alternative approach to

achieving resilience where conditional

redirects are not available. The approach is

based on feature of IP routing to duplicate

traffic, or ‘port mirroring’, and requires the

cache to intercept delivery for the content

objects it decides to serve. The ‘port mirror’

approach is illustrated on Figure 6.

Figure 6. Resilience based on traffic

mirroring.

 Logical modifications of a routing plain for

‘port mirror’ based resilience requires creation

of a mirror destination point connected to TC,

a filter forwarding (Action=forward) HTTP

traffic to and from the Internet, for example

where ‘Match Condition 1 = protocol:TCP,

destination port:80’ and ‘Match Condition 2

= protocol:TCP, source port:80’, a service

applying the filter to the ingress and egress

Internet traffic, and defining filtered traffic as

a source for previously defined mirror

destination point.

 With ‘port mirror’ approach both TC and

Content Origin can see object requests, and

TC needs to take over delivery for objects it

has in the cache. Figure 7 illustrates flow

diagram how TC can intercept delivery of

content objects.

 As shown on Fig. 7, initial request is sent

to both Origin and TC, and there is a race

between the Origin and the cache when

replying to the request. The cache needs to

win the race for successful delivery, which

can be achieved by inserting HTTP 302

Redirect, message spoofing the Origin and

instructing

the client to reconnect directly to the cache (or

it’s peer), and followed by instructions to the

client to close current TCP connection to the

Origin, e.g. by sending TCP FIN.

Figure 7. Flow for TC intercept of object

delivery.

 A cache failure in ‘port mirror’ approach

would not affect requests delivered to the

Origin because the cache is no longer on the

path and resilience is achieved natively.

Recovery mechanism for clients with in-

progress object or video delivery during the

cache failure is the same as in PBR approach,

the client needs to re-establish TCP

connection and re-request object being

requested but not received when the cache

failed, therefore practical testing of the user

experience obtained for PBR mode equally

apply. Similarly to PBR mode, in case of

transparent cache failure, the traffic is routed

to the upper caching layers or to the Origin.

INTERNET

TRANSPARENT
CACHES

Content

Request

Content

From subscriber
to Internet

From Internet
to subscriber

1. mirror
{Destination}

2. ip-filter {Name}

entry 1

{Match Condition 1, Action}

entry 2
{Match Condition 2, Action}

3. service

{Service Access Point, ingress

filter, egress filter}

4. mirror-source
{Mirror, IP Filter, Entry}

SERVICE
ROUTER

HTTP: HTTP/1.1 302 Redirect

HTTP: GET /site/movie/movie HTTP/1.1

Cache initiated TCP Session Closure

TCP: [FIN]

INTERNET

Cache HIT

Client reconnects directly to the cache

 However, port mirror approach has

drawbacks. First, some client may either not

support HTTP 302 or being prevented by

local security setting from following 302 off

domain for the initial object requests. Second,

the race condition means that if there is small

latency between the client and the Origin the

cache may not win all races reducing and

overall . Impact of on follows

the same linear function as for applying

content hashing and as illustrated on Figure 4.

The main difference is that in this case traffic

would be excluded form caching due to lost

races with the Origin rather then due to the

need to hash first bytes of each object.

Unified Caching

 The PBR with conditional redirect or port

mirror based resilience enable MSOs to build

robust distributed unified caching architecture

where transparent caches are deployed close

to network edges caching both OTT and CDN

content, while CDN appliances are deployed

closer to the network core. Both architectures

provide caching resilience without relying on

lab-balancers allowing upper-layer CDN or

the Origin serve content requests instead of

failed transparent caches.

Fig. 8 Resilient unified caching.

 Center the captions under each illustration

and make the text large enough so that

captions are easy to read.

CONCLUSIONS

 We considered two fundamental

challenges for MSOs when caching

unmanaged OTT content: cache avoidance

and maintaining network resilience, and

introduced two approached to deal with cache

avoidance: content policy indexes and content

hash indexes. Content policies show

improvement in volume of cacheable traffic

and in cache-hit rates and are a stronger

alternative to content hashing. The

improvement is dependent on traffic profile in

an ISP network. For traffic profile observed in

one of the NAR ISPs policy indexes yield

13% improvement in cacheable traffic and 6%

gains in cache hit rate. Other parameters

affecting QoE, for example, caching of small

objects and time to first byte are also

discussed. Content policies enable to improve

T_FB for 80% more of objects compared to

content hash indexes for the traffic profile

from the same ISP. That traffic would

otherwise would have slipped through

caching, and although 80% of objects do not

translate in equal volume of cacheable traffic

in Byte terms, it contributes to QoE

improvement.

Further we introduced two approaches to

maintaining network resilience without need

for deploying extra functions in networks like

load-balancers. The approaches used

advanced features readily available from

network routing of underlying networks: PBR

with conditional redirect and port mirror. Both

approaches enable MSOs to build robust

distributed unified caching architecture where

transparent caches are deployed in distributed

network locations. However, port mirror

approach is restricted to client that can

support HTTP 302 redirect or are allowed to

follow off domain redirects, and the race

condition may reduce P_CT and overall

R_CH if the latency in the network is small.

CDN DA

CDN Delivery Appliance

Transparent Cache

BNG/Router

CDN DA

CDN DA

Aggregation
PoP

Core PoP

Edge PoP

In conclusion, using PBR with conditional

redirect and policy based indexes enables

MSO to benefit from a more robust unified

caching solution for premium and OTT

content resulting in improved cache efficiency

and resilience, reduced latency and simplified

operations.

REFERENCES

1. Introduction to Content Delivery Networks.

White paper. September 2011, Velocix,

Alcatel-Lucent.

2. Velocix CDN, A Vision For The Future of

Content Delivery. Strategic White Paper.

September 2012. Velocix, Alcatel-Lucent.

3. Velocix unified caching. Strategic White

Paper. Dec 2012. Velocix, Alcatel-Lucent.

ABBREVIATIONS

BNG Border Network Gateway

CDN Content Delivery Network

HLS HTTP Live Streaming

HTTP HyperText Transfer Protocol

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

IPTV IP Television

MD5 Message Digest

MSO Multiple-System Operator

NAR North America Region

OTT Over The Top

PBR Policy Based Routing

PoP Point of Presence

QoE Quality of Experience

RFC Request For Comments

SHA Secure Hash Algorithm

TC Transparent Caching

TCP Transmission Control Protocol

