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Abstract 

This paper proposes a simple method to derive a 
closed-form expression for the exact symbol error 
probability of Non-Rectangular 22k+1 Amplitude 
Modulated Phase Modulated (AMPM) signals over 
an Additive White Gaussian Noise (AWGN) 
channel. The obtained expression is verified using 
MATLAB-based computer simulations of AMPM 
systems for different QAM modulation orders, 
including QAM8, QAM32, and QAM128. Finally, 
the derived equation for the exact symbol error 
probability is compared with the upper-bounded 
symbol error probability expression for different 
QAM orders 

. 

I. INTRODUCTION 
   One way to achieve high data rates over band-

limited channels is to increase the number of bits 
per symbol using optimal signal constellations 
designed to provide efficient performance. 
Nowadays, Quadrature Amplitude Modulation 
(QAM) is one of the most common modulation 
schemes used in communications systems.  In 
particular, square QAM constellations [1] that 
contain even number of bits, 2k, are widely used in 
many applications. Such systems have M symbols 
(M=22k), where the symbols are arranged to 
produce a square signal constellation. 

   Recently, the desire to reduce transmission 
errors in communications systems motivated burst 
receivers to support techniques like Trellis Coded 
Modulations (TCM) [1] in order to gain higher 
decoding granularity and therefore recover symbols 
more accurately.  Since TCM mainly uses double 
number of symbols when compared to a standard 
QAM signal constellation that does not employ 
TCM, the need for QAM constellations with odd 
number of bits (M=22k+1) has elevated lately. 

   Odd-bit QAM constellations are currently used 
in many applications like DOCSIS and HDSL [2] 
[3] [4]. However, some of these applications use 
odd-bit QAM constellations that are not arranged in 
rectangular fashion. In particular, these QAM 
constellations are arranged such that they are a 
special case of Amplitude-Modulated Phase-
Modulated (AMPM) signal constellations, which 
are designed to provide better efficiency in 
nonlinear distortion communication channels [5] 
[6]. AMPM modulation is also referred to as 
Carrierless Amplitude And Phase (CAP)-QAM 
modulation [4] [7]. 

   Most of the previous research work has focused 
on rectangular even-bit QAM constellations, where 
a closed-form expression for the exact probability 
of symbol error in the presence of AWGN has 
already been analyzed and established [1] [8] [9] 
[10].  Researchers also studied odd-bit rectangular 
QAM constellations and developed expressions for 
the exact probability of symbol error after it was 
upper-bounded by the probability of symbol error of 
even-bit rectangular QAM constellations. In fact, 
various ways were developed, including simple 
geometrical procedures, to obtain a closed-form 
expression for the exact probability of symbol error 
in the presence of AWGN. Specifically, the authors 
in [11] proposed a geometrical approach to derive a 
closed-form expression for the probability of 
symbol error for the special case 8-symbol 
rectangular QAM system in the presence of 
AWGN. While simple geometrical approaches were 
used to analyze even-bit and some odd-bit 
rectangular QAM systems, no equivalent work has 
been done for the more complicated odd-bit AMPM 
systems, where the signal constellation is not 
rectangular. This paper proposes a simple 
geometrical procedure to derive an expression for 
the exact probability of symbol error for an M-ary 
AMPM system in the presence of AWGN. 



 

   While other researchers recently developed an 
expression for the exact probability of symbol error 
for an odd-bit M-ary AMPM system in the presence 
of AWGN [7], their method was based on Craig’s 
approach [12], which requires evaluating 
complicated integrals and results were only shown 
for an 8-CAP/QAM system. On the other hand, our 
paper proposes utilizing the simple familiar 
geometrical approach, which is used in analyzing 
even-bit QAM constellations, to obtain the 
expression for the exact probability of symbol error 
as well as bit error of an odd-bit M-ary AMPM 
system in the presence of AWGN. Additionally, the 
derived expression in this paper is verified using 
MATLAB-based computer simulation for an odd-
bit M-ary (M=22k+1) AMPM system.  The results for 
different modulation orders are also contrasted 
against the upper-bound limits for the probability of 
symbol error of such a system. 

   This paper shows that geometrical approaches 
can be used to evaluate the probability of symbol 
error in signal constellations, where the shape of 
decision regions is irregular and more complicated 
than just a square or rectangle. This geometrical 
approach is based on the simple and familiar 
concept of calculating the error probability for two-
symbol Pulse Amplitude Modulated (PAM) system 
using the Maximum Likelihood Ratio (MLR) [1] 
[8] as the basis for decision. 

   This paper is organized as follows. Section II 
provides a brief overview of odd-bit M-ary signal 
constellations for which the expression of symbol 
error probability is derived. The derivation of the 
exact expression for the probability of symbol error 
as well as bit error using the geometrical approach is 
detailed in section III. Section IV compares the 
derived expression with previous work, simulation 
results, and upper-bounded system limits. Finally, 
the paper is concluded in Section V. 

II. 22K+1M-ARY AMPM SYSTEMS 
   Non-rectangular 22k+1 M-ary AMPM signal 

constellations can be represented as two offset-
overlapped 22k rectangular constellations. For 
example, Fig. 1 shows an 8-ary AMPM system, 
where its constellation is broken into two 
rectangular constellations. Generally, the 
construction of each rectangular constellation is 

based on two orthonormal basis functions       
given by 

 
                                         (1) 

                                         (2) 
 

where      is the symbol shaping pulse and    is 
the energy of the pulse     . fc is the center 
frequency of the modulated signal. The symbols in 
each constellation can then be represented via the 
orthonormal functions as 
 

                                       (3) 
 
where sni is the nth symbol in the ith constellation. 
The symbols sni is composed of the combination of 
two levels Ami and Bmi, in the    and    directions, 
respectively. The above representation of the 
symbol sni can be expressed as a space vector given 
by 
 

                                          

 (4) 
 
where ami is the mth level in the    direction for the 
ith constellation and, similarly, bmi is the mth level in 
the    direction for the ith constellation. The levels 
ami and bmi are expressed as 
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where d is the distance between two consecutive ami 
or bmi levels and M = 22k+1 is the total number of 
symbols in the M-ary AMPM system. Observe that 
the total number of symbols in the above 2-
constellation system is      
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Fig. 1. Constellation of an 8-ary AMPM system is broken into 

two rectangular constellations 
 
      Calculating the average symbol energy of all 
symbols in the M-ary AMPM system,    , consists 
of averaging the energy of all the equally likely 
symbols in both constellations as 5  
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where     is the energy of the symbol sni.  
Expressing    as the average energy of all symbols 
in both constellations, (7) can be rewritten as  
 

    
 

 
        

  

 
               

 

 
 

 

 

    

 
 

 

    

                      
  

 
               

 

                                

(8) 
      From (8), it can be shown that the average 
symbol energy in 22k+1 M-ary AMPM system is 
given be 
 

   
  

 
                                   (9) 

 
      The detector of the 22k+1 M-ary AMPM system 
consists of two correlators that use    and    as 
reference signals. After integration over the symbol 
duration, the output of both correlators form 
coordinates of the received symbol. The process of 
symbols decoding depends on the MLR concept [8], 
where the ideal symbol closest to the received 
symbol (i.e., minimum Euclidean distance) is 
selected to be the output of the symbol detector.  
Since all symbols are equally likely, the decision 
regions represent the half-point traces between ideal 

symbols as shown in Fig. 2 and 3. Observe that the 
constellations in Fig. 2 and Fig. 3 contain irregular-
shape decision regions, which are more complicated 
than the familiar rectangular decision regions found 
in rectangular QAM systems. 
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Fig. 2. Different decision region types composes the 

constellation of an 8-ary AMPM system 
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Fig. 3. Different decision region types composes the 

constellation of a 32-ary AMPM system (General case of 4 
decision region types) 

III. DERIVATION OF THE ERROR PERFORMANCE 
EXPRESSIONS 

   In this section, we utilize geometrical approach 
to develop closed-form expressions for the Symbol 
Error Probability (SEP) and Bit Error Probability 
(BEP) of 22k+1 M-ary AMPM system in the presence 
of AWGN.  

   Observe from Fig. 2 and 3 that the constellation 
of an M-ary AMPM system contains four different 



 

types of decision regions denoted by Type 1, Type 
2, Type 3, and Type 4 on Fig. 2 and 3.  The number 
of constellation points that belong to those regions 
are denoted by N1, N2, N3, and N4, respectively. 
They are given in Table 1. 
      When applying the MLR concept (shortest 
Euclidean distance decision rule) to decide which 
symbol has been transmitted, correct symbol 
detection occurs if the noise is small enough to keep 
the received symbol within the decision region of 
the transmitted symbol. Since the constellations 
under study contain four different decision regions 
types, the probability of correctly decoding a 
particular symbol will depend on the shape of the 
decision region of the transmitted symbol. 
 

TABLE 1. NUMBER OF CONSTELLATION POINTS IN 
DIFFERENT DECISION REGIONS TABLE TYPE STYLES 

Decision 

Region 

Number of 

constellation points 

Type 1             
 
 

Type 2      
Type 3      
Type 4              
Total N1+N2+N3+N4 = M 

 
 
      Therefore, the process of calculating the 
probability of decoding symbols correctly, Pc, 
involves calculating the probability of correct 
symbol decoding in every decision region type, 
which can be expressed as 

 
                   

 
                               (10) 

 
where    is the ith symbol in the M-ary AMPM 
constellation,       is the probability of the symbol 
  , and          is the probability of correct 
decoding given    was transmitted. When all 
symbols are equally likely, the probability of 
correct symbol decoding can be represented as 

 
     

 

 
         

 
                              (11) 

      Observe that the          term is a function of 
the transmitted symbol and therefore depends on the 

decision region that corresponds to that symbol.  
Since all symbols that correspond to each decision 
region are equally likely and there are only four 
different decision regions, the probability of correct 
symbol decoding, Pc, in (11) can be rewritten as  

 
     

 

 
                                    (12) 

 
where Pc1, Pc2, Pc3, Pc4 and are the probability of 
correct symbol decoding given that the transmitted 
symbol corresponds to decision region Type 1, 
Type 2, Type 3, and Type 4, respectively. 
The derivation starts by evaluating the probability 
of correct symbol decoding given that the 
transmitted symbol belongs to decision region Type 
1 shown in Fig. 4. Using the familiar MLR concept 
after rotating the decision region by 45o, Pc1 can be 
expressed as [1] [8] 

 

               
  

 
          

  

 
   (13) 

 
where na and nb are the zero-mean noise 
components in the    and    directions, 
respectively, with variance of No/2, where No/2 
represents the two-sided AWGN power spectral 
density level.  It can be shown that (13) can be 
rewritten as [8] 
 

                   
  

 
     

             
  

 
   

                      
  

  
              

  

  
   

              
  

  
           

  

  
   (14) 

 
where      is the familiar often-tabulated function, 
which is the tail probability of the standard normal 
distribution [1]. 
 



 

d2
2 d2

2

 
Fig. 4. Decision region Type 1 in an M-ary AMPM system  

 
      Next, Pc2, which represents the probability of 
correct symbol decoding given that the transmitted 
symbol corresponds to the more-complicated 
decision region Type 2, is evaluated using 
geometrical approaches similar to those developed 
in [11]. The decision region Type 2 represents the 
shaded area in in Fig. 5, where Pc2 is equal to the 
area   

   minus the area   
  , where both areas are 

evaluated under the noise Gaussian distribution 
curve.  That is, Pc2 can be represented as 
 

                            
           

      
  

 
             

     
    (15) 

 
where s2 implies that the transmitted symbol 
corresponds to decision region Type 2.  The 
probability of correct decision occurring in   

  (i.e., 
area of   

 ), is easily calculated using the MLR 
principle described above and is given by 
 

   
       

                 

  
             

  
  

  

   
             

  
         

  

  
   (16) 

 
      In order to find Pc2, the area   

   still needs to be 
calculated.    

   can be geometrically found by 
taking one-quarter the difference of square areas 
ABCD and WXYZ shown in Fig. 6, which can be 
expressed as 
 

   
        

                       
 

 

 
                                                     (17) 

 

where PWBX, PABCD, and PWXYZ are the areas of the 
WBX triangle, ABCD rectangle, and WXYZ 
rectangle, respectively, evaluated under the noise 
Gaussian distribution curve.  PABCD can be easily 
found to be  
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      PWXYZ can be expressed as 
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      Therefore, from (17), (18), and (19), can be 
expressed as  
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      Using (15), (16), and (20), the area Pc2 can be 
expressed as 
 

             
  

  
          

  

  
        

  

  
       

(21) 
 
      Next, Pc3, which represents the probability of 
correct detection, given that the transmitted symbol 
corresponds to decision region Type 3, is evaluated.  
Pc3, which is equivalent to the shaded area (  ) in 
Fig. 7, can be obtained by subtracting the triangle 
area   

   from the triangle area   
  and then adding 



 

the rectangular area   
    to the difference, which 

can be written as 
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where s3 implies that the transmitted symbol 
corresponds to decision region Type 3.  Observe 
that    

  (the area of   
 ) can be easily expressed as 
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Fig. 5. Detailing decision region Type 2 (  ):    is the Gray-
shaded area in the figure, which equals   

  minus   
  , where 

  
  is the open-ended vertically-hashed square area (ABCD) 
and   

   is the horizontally-hashed triangular area (WBX). 

d2
2

d4

A B

CD

W

X

Y

Z

V

 
Fig. 6. Calculating the area    

    in Fig. 5.   
   is one-quarter 

the difference of square areas ABCD and WXYZ 

      It can be shown that the area   
  , is half of the 

WXB triangle area calculated in (20). Therefore, the 
area   

   is given by 
 

   
       

                  
          

 
 

   
   

       
  

  
         

  

  
         

  

  
          

  

  
 

 
    (24) 

 
      Finally, the area   

    (ZVCD) is the half of the 
open-ended rectangular area (ZWXD) shown in Fig. 
7, and therefore can be easily represented by the 
following equation 

 

   
         

        
          

  

  
             

  

  
  

 
  

 

   
         

        
          

  

  
           

  

  
 

 
 (25) 

 
      Using equations (22) through (25), it can be 
shown that Pc3 is given by 
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Fig.7. Detailing decision region Type 3 (  ):    is the Gray-

shaded area in the figure, which equals   
      

      
   , where 

  
  is the open-ended vertically-hashed triangular area (ABC), 
  

   is the horizontally-hashed triangular area (AWV), and 
  

    is the open-ended rectangular area (ZVCD). 
 



 

      The last step in the analysis is to evaluate Pc4, 
which represent the probability of correct symbol 
detection given that the transmitted symbol 
corresponds to decision region Type 4.  Pc4, which 
represents the shaded area    in Fig. 8, can be 
obtained by subtracting the two triangles   

   and 
  

    from the rectangular area   
 , and therefore can 

be written as 
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where s4 implies that the transmitted symbol 
corresponds to decision region Type 4.  Using the 
MLR principle, it can be shown that the rectangular 
area   

  is given by 
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      The triangular areas   
   and   

    are equal and 
can be found in a similar fashion to the area and 
therefore the area is given by (20), which is 
repeated here for convenience 
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Using (27), (28), and (29), Pc4 is evaluated and 
found to be  
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Fig. 8. Detailing decision region Type 4 (  ):    is the Gray-
shaded area in the figure, which equals   

      
      

   , where 
  

  is the open-ended vertically-hashed rectangular area 
(ABCD),   

   is the horizontally-hashed triangular area (AWZ), 
and   

    is the horizontally-hashed triangular area (WBX). 
 

      Finally, the total probability of correct symbol 
decoding, Pc, is found using (12), (14), (21), (26), 
and the values in Table 1. After few algebraic 
simplification steps, the result is given in the 
following expression 
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      The probability of symbol error for the 22k+1 M-
ary AMPM system in in presence of AWGN is 
       , which results in the following equation 
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(32) 
 

      Using (9), (32), and the fact that the symbol 
energy is r times the bit energy, where r is the 
number of bits per symbol (         ), Pe can 
be rewritten as 
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which coincides with the expression provided in 
[7], where Craig’s approach, which requires 
evaluating complicated integrals, was used to obtain 
the probability of error expression. Observe that the 
above expression for Pe is valid for all Odd-bit M-
ary AMPM systems. Therefore, it can be used to 
obtain the specific probability of symbol error 
expressions for different odd-bit AMPM QAM 
systems as follows 

 
      For M = 8, Pe is found to be 

 
   

 

 
   

  

 

  

  
       

  

 

  

  
  

 

 
   

   

 

  

  
            (34) 

 
      While for M = 32, Pe is given by 
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and for M = 128, Pe is expressed as 
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IV. RESULTS – SYSTEM SIMULATION AND 
COMPARISON AGAINST THE UPPER BOUND LIMIT 

      MATLAB®-based system simulation was 
performed to validate the derived expressions.  
Figure 9 shows complete agreement between the 
theoretical expressions and simulation results for 
different modulation orders. 
      The upper bound approximation limit for an 
odd-bit M-ary (M=22k+1) AMPM system is given by 
[reference] 
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      The theoretical expressions in (34) through (36) 
where compared against the corresponding upper-
bound limits in Fig. 10. As expected, observe that 
the theoretical curves fall below the upper-bound 
limits. 
 

 
Fig. 9. Exact theoretical expression results match simulations 

results for different modulation orders of an odd-bit M-ary 
AMPM system. 

 
 

 
Fig. 10. Exact theoretical expression results, for different 

modulation orders of an odd-bit M-ary AMPM system, sit 
below the known system upper-bound limits. 
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V. CONCLUSIONS 
This paper proposed the use of a simple 

geometrical approach to develop an expression for 
the probability of symbol error of an odd-bit M-ary 
(M=22k+1) AMPM system in the presence of 
AWGN.  The obtained theoretical expressions were 
validated using computer-based system simulations 
and were compared against the known upper bound 
limits for such systems. 
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