
 A Software Friendly DOCSIS Control Plane
 Alon Bernstein
 Cisco Systems

 Abstract

 It has been 15 years since the initial set of
DOCSIS specs have been authored. In those
15 years software engineering has seen an
explosion in productivity at the same time that
the DOCSIS control plane has remained fairly
unchanged. Can we apply these productivity
tools to the DOCSIS control plane to facilitate
greater simplicity and feature velocity?
This paper will outline both software trends
and protocol design trends that are relevant to
the above discussion and how they can be
applied to DOCSIS.

OVERVIEW

DOCSIS is primarily an interface protocol
between a CM and a CMTS. There is a wide
palette of options for a protocol designer and
all are relevant to DOCSIS design. Each
option has its tradeoffs and the role of the
protocol designer is to choose the option that
fits the system requirements and constraints
the best. The list of options include:

• Generalized interface vs. mission
specific interface

• Legacy protocol vs. mission specific
protocol

• Stateless vs. stateful
• Client-Server vs. Peer-to-peer

And more…In many cases there are no simple
rights and wrongs and a choice that might
have made sense at the time of the protocol
design turns out to be sub-optimal as systems
often end up getting deployed in a manner
that is different then what they were designed
for. All of these choices have an impact on
software. Its not always the case the choice
that is optimal for software is the ideal for
meeting the system requirements, still its
unfortunate that in many cases the software
implementation ease is considered as a

relatively low priority item. This observation
is patricianly in place for DOCSIS since the
amount of software resources needed to
support the DOCSIS set of protocols is
significant.
Before proceeding, a word of caution: in cases
where there are requirements and constraints
that supersede software requirements then
clearly the guidelines explained in this
document will not apply. The challenge is to
identify these requirements and constrains
correctly and not to pre-optimize at the
expense of “software friendliness”. To quote
the author of the “Art Of Computer
Programming”:

SOFTWARE CONSIDERATIONS

Software engineering and protocol design
share the same approach to simplifying
complex system requirements:

• Modularization: sub-divide a large and
complex system into simple and easy
to test modules with well-defined
inputs and outputs.

• Layering: Define the hierarchy of
modules, what services each
component provides to another.

• Abstraction: identifying common
services that can be shared across
modules

Software design methodologies have evolved
around the same timelines as the Internet
revolution and the creation of networking
protocols. But while the timelines are similar
the amount of change software went through

"We should forget about small
efficiencies, say about 97% of the time:
premature optimization is the root of all
evil” (Donald Knuth)

is much larger the amount of change in the
suite of networking protocols that drive the
Internet.
Software has evolved from the “C”
programming language to object oriented
languages such as C++ and Java which
allowed for further modularization/layering
and abstraction of code to web technologies
that brought amazing scale, speed and
flexibility. At the same time network
protocols stuck with the OSI 7 layer model [6]
as possibly the only attempt to apply
modularization/layering and abstraction to
networking. Case in point: many of the
routing protocol RFCs have pages upon pages
of interface specifications and message
formants. If written from with a “software
friendliness” point of view they could have
had a well-defined separation of the methods
to distribute data across a group of routers
(which is similar in many of the routing
protocols) and the actual routing algorithms.
Obviously the issue outline above has a wider
scope then DOCSIS, so to keep the discussion
focused here are a couple of examples of why
the current DOCSIS specifications does not
follow basic software implementation
guidelines along with a high-level proposal on
how to fix it (going into fine details is outside
the scope of this paper):
Example 1: DOCSIS registration.
The DOCSIS registration process starts with
bringing up the physical layer, jumps to
authentication and IP bring up, then to service
provisioning then back to physical layer bring
up.
Initially services are created in the registration
process. Additional services are added with a
different mechanism then the one used in
registration (DSx).
Why is it not software friendly? The fact that
the cable modem bring-up has a dependency
on the IP layer bring-up makes it difficult to
independently develop (aka “feature
velocity”) and independently test (aka
“product quality”), the registration process.
This is a good example where an idea that
seemed to offer:

1. Simplification: because the same
mechanism used to provision services
is also used for the modem bootstrap

2. Optimization: fewer messages since all
the various layers are squeezed into
the same

Turns out to be not-such-a-good-idea when it
comes to software implementation. This
becomes painfully obvious when the system is
physically distributed. Imagine an
implementation where DOCSIS functionality
is segregated into processor A and Layer 3
functionality into processor B. Because of the
way registration is handled the DOCSIS
processor needs to know a little about the IP
layer and the IP processor needs to know a bit
about DOCSIS. Clearly these are solvable
problems and “anything can be done in
software” but as mentioned above there is a
price to pay in speed of implementation,
testability and debug of system issues.
How would a software friendly registration
protocol look? A software friendly
specification would have clear and
independent stages as depicted in the figure
below:

Figure 1 SW friendly registration

1. bootstrap: initial physical layer bring
up

2. Authentication: validation of the cable
modem for network access

3. L3 bring up: DHCP processing and IP
address assignment

Each one of the above steps would be treated
as an independent transaction and the three of
them would be the workflow needed to bring
a cable modem online.
For these 3 steps the major deviation from the
current registration is that we don’t rely on
TFTP for service provisioning. There are two
reasons to skip TFTP; the first being that the
IP layer is not even up so we can’t access
anything beyond the CMTS and the second
being that we want to postpone the service
providing part to a later stage anyway. Having
said all that, the CM still needs to
communicate with the CMTS and it still needs
some form of a service flow to do it. If we
don’t have any services provisioned how do
the CMTS and CM communicate? The
“temporary flow” that DOCSIS creates
anyway for registration would just leave on
until after the IP bring-up phase and only after
that would be replaced by the “real” in the
service enablement phase
As far as the next steps go we fortunately
have clear transactions to handle:

• Service provisioning using DSX
• Changing physical layer parameters

with the DBC
These can be used to change services and
channel assignments after the modem is
online. Note that the CMTS can still use
TFTP to retrieve service parameters and those
will be parsed into a DSA message.
Naturally there are tradeoffs to this proposal;
the number of messages has increased and a
new form of service enablement has been
added, however the payoff is significant in
terms of software modularity.

Example 2: The Mac Domain Descriptor
MDD message is a dumping ground for
information about plant topology, IPv6, error
message report throttling, security, physical
layer parameters and more. A software
friendly specification would create

independent messages for each of the
functional areas. Though one can argue that
MDD is “just a transport” for data that can be
managed by independent modules in the
software, however the inclusion of all of them
in the same message creates dependencies that
are easier to avoid were the MDD to be
broken into separate messages.

END-TO-END PRINCIPAL

Some link-level protocols (such as DOCSIS)
assume reliability is required and come up
with their own set of timers to assure delivery
at the link layer. This might be justified if the
link layer is highly unreliable, and even in that
case the timeouts set for retransmission must
be an order of magnitude shorter then the
timeouts of the end-to-end application. If
retransmission timers are too long then all
sorts of odd corner cases might occur. For
example: the DSx-RSP timeout is about 1 sec
and there can be 3 of them. If an end-to-end
signaling protocol, such as SIP [4] has a
message re-transmission time of the same
order of magnitude then a DOCSIS
implementation might release a SIP message
when the application level has already timed
out and re-transmitted its own copy. This will
not cause the system to break since a robust
implementation knows how to deal with
messages that are duplicated or out of order,
but it will clutter the error counters and fault
logs with a "duplicate message" event which
would have been avoided if the DOCSIS link
layer counted (as it should have) on an end-to-
end session establishment protocol. The
reader might ask, "what if the end-to-end
protocol is designed to be unreliable"? Even
in that case it’s not the role of the DOCSIS
link-layer to assure delivery if the higher lever
application does not require assurance in
order to operate correctly.
The DOCSIS software may trigger a timeout
for a DSx-RSP, however the expiration of this
timeout would be only used for recording a
failure and releasing system resources
allocated for the DSx, not for triggering a re-

transmission.
If the media is highly unreliable and failures
are a common occurrence then they might be
room for link-level error repair but in that
case the timeouts need to be an order of
magnitude shorter then the application
timeouts - a suggested range would be 100ms
or so.
A further simplification based on the end-to-
end principal is to remove the DSx-ACK
phase. DOCSIS uses a 3-way handshake for
DSx. The rough outline of the conversation at
the service activation phase goes like this:

1. CMTS -> CM: please start a service
(DSA-REQ)

2. CM -> CMTS: ok, I started the service
(DSA-RSP)

3. CMTS -> CM: cool, my CMTS
resources are ready you can start
sending data (DSA-ACK)

But this third step is not really needed for the
same end-to-end argument. For example
consider this zoon-in of a PCMM message
sequence (figure 9 in ref [2])

Figure 2 PCMM application signaling
It’s obvious from this diagram that the DSA-
ACK is not fulfilling any useful function. For
one it’s a “dead-end” not resulting in any
further action, and since it is sent at the same
time as the Gate-Set-Ack it is useless in
guaranteeing any sequencing of events.
As a side note, some have suggested that the
DSA-ACK is needed for extra reliability but
this would be an even worst violation of
protocol rules since the DSA-RSP is already
an acknowledgement and a protocol should
not acknowledge and acknowledgment.

ENCODING

DOCSIS uses TLVs to serialize information
however TLVs are not common in modern
networking stacks and not supported in many
of the productivity tools and code generation
tools used today. Non-TLV types of
encodings include JSON/HTTP/XML/google
"protocol buffers" and others. The advantages
of the above mentioned tools are:
1. They come with code generation tools that
relive the software developer from the burden
of parsing messages into native data
structures.
2. Most of them encode information in human
readable strings that makes debugging easier.
TLVs are a more compact form of serializing
data but as bandwidth available on the cable
media increases this is becoming a non-issue.
TLVs might also be easier to parse, but CPU
power is much less of an issue then it was at
the time the DOCSIS specification were
written. In fact, the modern cable modems
have more powerful CPUs then early CMTS
products!

OPEN SOURCE

Another software trend that has been going
strong is the movement to open source. As a
development methodology it has proven to
deliver on wide scale and highly complex
software projects. How can open source apply
to cable? The CMTS/CM interaction is not
likely to be of interest to the open source
committee since its so domain specific and for
product differentiation reasons it’s highly
unlikely that CMTS/CM vendors will open
their source code.
This document proposes to use source a
companion to the CableLabs standard
documentation process. For example, if a new
registration process was to be pursued then
high-level function calls and JSON encodings
could be published as open source. This
would hopefully promote better
interoperability and shorter ATP cycles as it

removes a lot of ambiguity in the interface
design.

DATABASE TECHNOLGIES

A CMTS implementation needs to manage a
database of cable modems, plant topology and
more. In many cases this information needs to
be shared with a CM and so one view of a
DOCSIS system could be that it’s a
distributed database of CM state and
resources. With that observation it’s clear that
the only type of data sharing that DOCSIS
allows for is the transactional type. That used
to be the only model for data sharing in the
database industry in general but the scale that
companies such as google and facebook had
to grow to gave rise to a new model, one that
priorities performance over accuracy. Clearly
for some types of data this model will not
work well (financial transactions for example)
while for others it makes sense (searching
through web pages).
An interesting observation made by the
Internet community is captured in what’s
called the “CAP theorem” [5]. In a nutshell
what the CAP theorem states is that when a
database designer is requested to support a
distributed database that provides 1:

1. Performance
2. Consistency of data across components

of the distributed database
3. Resiliency in cases for system

malfunctions, for example, packet
drops.

Only two out of these three requirements can
be met. The designer still has to choice of
which two are fulfilled, but it is not possible
to meet all three.
As mentioned above DOCSIS supports a
transactional sharing of data that represents a
choice of consistency and resiliency over
performance, and as long as performance

1 [ab] CAP stands for “consistency, availability, and
fault tolerance”. I took the liberty of translating the
above to terms familiar to the cable community since
the original terminology might be confused with
existing cable terms.

requirements are met (for example, number of
voice call created per-second) it is a win-win
situation. But as new applications become
available and the load on the control plane
increases it may make sense to consider other
choices. The proposal in the previous section
to avoid re-transmissions represents the option
of demoting resiliency. Another option is to
assume an “optimistic model” where the
CMTS can allocate and activate resources on
a DSA-REQ, assuming that a positive DSA-
RSP will follow and intentionally allowing for
short period of times of inconsistency if cases
where the DSA-RSP was not successful.
Another useful tool from the database world is
the concept of “data normalization”. Its
outside the scope of this paper to go into the
detail of data normalization (see ref [3]), but
in a nutshell it’s a set of guidelines on how to
break complex data into a list of tables with
rows and columns where each row is fairly
atomic. When inspecting some of the
DOCSIS MIBs and MAC messages its
obvious that some break at least one of the
normal forms. For example, the inclusion of a
“service flow reference” in the same table as
the “service flow id” violates the normal form
that prohibits dependencies between columns
of a table. Without getting into too many
details this paper only makes the observation
that management constructs that are “normal”
are easier to implement in software.

SECURITY

An obvious security hole in DOCSIS is letting
the cable modem parse the configuration in
order to reflect it back to the CMTS. It’s
worth mentioning it in this document because
(ironically) this might have been the single
attempt in DOCSIS to help software by
offloading the task of parsing the cable
modem configuration to the cable modem.
However, in order to plug this security hole
the CMTS needs to parse the configuration
anyway and overall it’s a great example of
how premature optimization can create more
harm then good.

CONCLUSION

DOCSIS has obviously been a very successful
protocol. The DOCSIS provisioning and
back-office system is part of this success,
especially when comparing it to its DSL
counterparts where a strong standard for
provisioning and service enablement does not
exist. Nevertheless a 15-year critical review,
and possible updates would certainly help
DOCSIS to become even better in facing the
challenges ahead.
This paper suggests that software
implementation ease and modern software
tools need to play a bigger role in the design
of future DOCSIS protocols and while some
of the proposals made here are of academic
and demonstrative value only, others can be
relevant to future versions and enhancements
of DOCSIS.

REFERANCES

1. DOCSIS MULPI :
http://www.cablelabs.com/specific
ations/CM-SP-MULPIv3.0-I18-
120329.pdf

2. PCMM:
http://www.cablelabs.com/specific
ations/PKT-SP-MM-I06-
110629.pdf

3. Codd, E.F. (June 1970). "A
Relational Model of Data for
Large Shared Data Banks".
Communications of the ACM 13
(6):377–
387.doi:10.1145/362384.362685.

4. Session Imitation Protocol, RFC
3261

5. CAP Theorm :
http://www.cs.berkeley.edu/~brew
er/cs262b-2004/PODC-
keynote.pdf

6. ITU-T, X.200 series
recommendations:
http://www.itu.int/rec/T-REC-X/en

