
 XML SCHEMA REPRESENTING AN EBIF TEMPLATE DEFINITION,
METHOD FOR AUTO-GENERATING SCHEMATIC INSTANCES FROM ORIGINAL
EBIF SOURCE CODE AND CONSTRAINING CUSTOMIZED INSTANTIATIONS OF

THE RESULTING TEMPLATE

 Mike McMahon and Lea Anne Dobbins
 Comcast Media Center

 Abstract

 While there is no standardized source code
language for EBIF, the commonly used
authoring tools and compilers use XML as
their source syntax. Peripheral XML
standards such as XML Schema, XPath and
XSLT can therefore be leveraged in
validation, transformation and marshalling of
EBIF source trees. Presented here is a
methodology in which an arbitrary EBIF
application, developed by any iTV vendor can
be automatically “templatized” such that its
original source tree is subsequently used to
generate data driven, customized
instantiations. Our ambition is to alleviate
toolset incompatibility resulting from
proprietary syntax, compilers and
customization toolsets, thereby restoring the
spirit of open standards to the end-to-end
workflows associated with templating and
customizing EBIF applications.

THE NEED FOR TEMPLATING IN EBIF

 In order to re-purpose, brand or skin
interactive television applications, a non-
technical person (e.g. a brand manager)
should be able to simply select an underlying
template and supply the desired text, graphics
and colors needed to generate a customized
instantiation. In order to achieve this aim it is
necessary to isolate the core logical and
functional attributes of an application as a
“template,” whereby the customized data and
stylistic attributes are supplied separately, in a
non-technical and user friendly way, in order
to define a given “instance.” These
capabilities need to be fluid enough to

demonstrate unique branding and creative
elements in the template “instance.”

PROBLEM WITH CURRENT SOLUTIONS

Data, logic and presentation

 There is a mechanism within EBIF to
separate application logic, represented in
binary form as a .PR file from application
data, represented as a .DR file. This type of
separation is certainly useful in order to iterate
through data sets in applications such as those
that fetch dynamic RSS feeds.

 Nonetheless, logic, data and presentation
remain largely coupled within EBIF.
Consequently, true isolation of a core, logical
template in order to expose only the stylistic
and data qualities of an application to a non-
technical brand manager is not feasible within
the current construct. Presentational qualities
and logical data binding directives are
necessarily part of the core source code, as
opposed to an accompanying properties file.

 Even if such qualities were to be
encapsulated in an external properties file
there would still be need to enforce
constraints such as string length, image format
and dimensions, etc on any given set of
instantiation properties. The most effective
and safe way to generate a custom application
is, therefore, to go back to the original
application author with a set of requirements.

 While this need not amount to much more
than a copy, paste, compile effort on the part
of the developer it is neither an efficient use
of the developer nor the technology. In

2010 Spring Technical Forum Proceedings - Page 357

addition, such an approach clearly raises a
variety of quality assurance concerns as the
underlying code base cannot be assumed to be
a static entity. The custom instantiation
would, therefore, need to go through a test
cycle and although somewhat redundant, in
many cases, this test cycle will need to be as
comprehensive as that conducted on the
original code base.

Proprietary Template Toolsets

 There are several “template toolset”
products available. Such products do indeed
solve many of the problems identified above.
They typically provide a simple, non-
technical customization interface allowing a
user to select from a pre-defined set of
underlying templates and provide custom
graphics, text and color schemes. These
values are then used in a find and replace
mechanism against the application’s original
source code such that a new, unique code base
is generated and sent to a compiler, generating
a custom instantiation. The more mature
systems are additionally validating and
constraining user input thereby enforcing
output quality.

 Such template toolset products
unfortunately ship with a fixed set of baseline
templates and corresponding customization
GUIs. Customized instantiations are confined
to the functional capabilities of those pre-
canned templates. In order to add an
additional functional template to the toolset
one must work with that vendor to define and
develop it.

 It is generally not possible to ingest an
application developed by a third party into
these types of proprietary toolsets. Moreover,
because “templatization directives” are not
exposed, any new applications that are added
to the system must be authored in a
proprietary SDK, typically provided by that
same vendor.

 Therein lay the primary problem we seek
to address: the lack of interoperability
between EBIF authoring and templating or
customization tools.

THE TEMPLATE DEFINITION SCHEMA

 We aim to define an open standard XML
schema which is intended to serve as a
structured, strongly typed interchange
between EBIF authoring tools and the
template toolsets used for re-skinning and
customizing specific instantiations of those
applications.

 Specifically presented here is an XML
data model we call templateDefinition.xml
and a functional reference implementation as
it relates to ingesting a new application into a
template toolset. The data model and
methodology described herein allows an
arbitrary EBIF code base, authored outside of
and independently from the template toolset,
to be ingested into the template toolset in a
manner in which the “templatizable aspects
and constraints” are identified and
understood.

 The application can then be added to the
set of available templates, allowing the
template toolset to reliably render, capture and
validate the instantiation parameters in its
customization GUI.

 Our belief is that such a schematic
representation of “where and how an
application is customizable” should be
adopted as an open standard, thereby allowing
applications developed in any EBIF authoring
tool to be ingested into external, third party
customization tools.

Template Definition XML

 Figure 1 below illustrates the crux of the
data model. It provides document pointers to
each file within the code base and, for each
file, XPaths to the precise nodes and/or

2010 Spring Technical Forum Proceedings - Page 358

attributes that could be reasonably and
successfully customized. For each of these
“templatizable items” the necessary
constraints on the instantiation parameters are
additionally defined.

Figure 1: templateDefinition.xml

Physical Location of Source Code

 The template toolkit needs build time
access to the original source code in order to
compile a given instance. We use URIs as
pointers to the location of the original source
code. With respect to third party IP, there are
a couple options in terms of the physical
location of the source code. It could be
hosted by the original application developer
and dynamically accessible to a template
toolkit when compiling a custom instance.
Alternatively, application authors could
upload source code to the template toolkit.
Either scenario necessitates contractual
protection of the source code and associated
IP.

Generating the Template Definition XML

 The original developer of a given
application is, clearly, the authority with
respect to establishing which elements within
the application could or should be safely
customized. We therefore seek a mechanism
whereby the original developer can compile a
default instantiation while establishing

specific text strings, variables, integers, colors
or graphics as “customizable.”

 Likewise, the original developer is best
able to define necessary constraints during the
customization process. For example, the
default value of a given text message within
the application might be ten characters long.
A message of twelve characters would be
perfectly acceptable but a message of fifteen
or more characters would cause line
wrapping, detrimental to the visual
appearance of the overall screen. It is
therefore necessary to solicit not only the
“templatizable aspects” of the application
from the original developer, but also the
corresponding constraints.

 Our template definition XML, of course,
describes both. The question, however,
becomes how is that definition itself
generated? Our view is that if such a data
model were widely adopted it would likely be
the case that EBIF authoring tools would
automatically generate the template definition
XML as a supplementary output of the
authoring and compilation process. Perhaps
application authors would highlight blocks of
code and right click to bring up a dialogue
box in order to capture the constraint
definitions.

 In lieu of template definition files
generated from an authoring tool we had need
to supply our own by way of an external,
supplementary file. It is far from desirable to
introduce the risk of human typos when
creating the template definition XML as a
freehand effort. It was also not possible to
inject innocuous markup into the source code
as the compilers would reject the syntax.

 In order to automatically generate a
compliant template definition XML file and
remain both agnostic and innocuous to
existing compilers we introduced a naming
convention in the authoring syntax such that
the application author prefixes potentially

2010 Spring Technical Forum Proceedings - Page 359

customizable areas of the source code with
templateItem-. This allows the original
application author to surgically pinpoint
specific areas of the source code that can,
should or must be customized. Additionally,
because this is a naming convention as
opposed to an extension of the source syntax
itself, it does not affect the existing compilers
and can be used within any XML based EBIF
source syntax.

 Given such a naming convention within
the underlying source tree we are able to
programmatically traverse the whole of the
application’s source and extract the precise
location of all “templatizable aspects” of the
application as defined by the original
application author. Figures 2 and 3 below
illustrate an XSLT script that will traverse an
EBIF source tree written in the TVWorks
MAX syntax and generate a normalized
template definition XML file. The logic in
the XSLT will automatically derive the XPath
and constraints. It takes a first pass through
the source tree, indentifying each node
flagged as “templatizable” by the author and
holding them in memory.

Figure 2: XSLT first pass traverse

We then take a second pass through the
memory tree in order to analyze individual
node context, group and define each of the
items:

Figure 3: XSLT analyze and generate

 This process results in a single, normalized
template definition XML file. It is this file, in
conjunction with the original source tree,
which a third party template toolset can now
ingest, interpret and reliably expose a
corresponding customization interface.
Insofar as the authoring tool and templating
toolkit are independent pieces of proprietary

2010 Spring Technical Forum Proceedings - Page 360

software from two different vendors, the
template definition XML file serves as a data
interchange able to abstract away those
proprietary underpinnings and achieve
interoperability between these two crucial
components of the overall workflow.

REFERENCE IMPLEMENTATION

 In order to exercise the data model and
prove out the interoperability we have
implemented a basic template toolkit to ingest
an application and its template definition
XML file. This is done as a web system with
two login roles. The first role is that of an
application developer wishing to upload and
“templatize” their application. The second is
for a “customizer,” the individual interested in
selecting from the overall set of available
templates and generating a customized
instantiation.

 In this implementation Tomcat is used as
web server and servlet container, Saxon as an
XSLT processor and Oracle as a database.
The database maintains names and
descriptions of available templates as well as
pointers to the original source tree and
corresponding template definition XML file.

Application Upload and Template Definition

 Application developers are presented with
a simple HTML form page to enter the name
and brief description of their application. The
source tree is uploaded as a single .zip file
which is unzipped into the server’s file system
and parsed by the XSLT script. The script
discovers any “templatizable items” within
the source tree and generates a single,
templateDefinition.xml file. The developer is
asked to provide some additional, human
readable information to assist a customizer in
understanding the significance of each
customized item. We ask the developer to
define a name and briefly describe each of the
items. Once done, the template definition

XML file is updated with the additional
information and the developer has completed
the upload. Figure 4 below illustrates the two
upload screens as presented to the application
developer.

Figure 4: Uploading an application

 Figure 5 below represents the logic and
data flow associated with ingesting a new
application and generating its template
definition XML. Ultimately, we persist a
name and description of the EBIF application
as well as URI pointers to both the .zip file of
the original source tree and generated
template definition XML file.

Figure 5: Ingest logic and data flow

2010 Spring Technical Forum Proceedings - Page 361

 The application is then deemed a
template and ready for customization.
Logging in as a customizer, the user is
presented with a list of all templates in the
database. Selecting any template will present
the user with a screen for supplying the
necessary customization values. Figure 6
below illustrates the two screens as presented
to the customizer.

Figure 6: Customizing an application

 It should be noted on the second screen
that the template definition XML file itself is
used to generate the customization interface.
The customizer interacts with familiar HTML
forms, where each input field is tailored to the
attribute in question and constrained
accordingly. Graphics have file upload fields,
strings are constrained text input fields and
colors are defined through a standard
JavaScript color picker widget. The template
definition XML is also used to generate field
by field validation JavaScript such that when
the customizer submits the form each field is
validated by the web browser and it is
impossible to post any values breaking the
constraints defined by the original application
author.

 XSLT is then used as a find and replace
mechanism against the original source tree,
replacing the result of all XPath expressions
found in the template definition file with new
values in the instance definition file. The
resulting source tree can then be compiled
into the customized EBIF binary. Figure 7
represents the logic and data flow associated
with the customization process.

Figure 7: Customization logic and data flow

Managing MSO and User Agent Variations

 This methodology can be summarized as a
normalized find and replace system with the
actual customization achieved at build time.
This technique achieves customization with
respect to re-skinning and brand repurposing
motivations. With respect to true end-to-end
interoperability, however, we would be remiss
if we did not address variations among such
things as MSO navigational paradigms, user
agent execution and integration with third
party guide, DVR and VOD systems.

 Each of these begs for their own level of
unique customization, quite different and
more complex than the surface level look and
feel modifications desired by the non-
technical brand manager. In addressing
interoperability across navigational
paradigms, consistency in UI dialogue
screens, backend interoperability, etc, we
nonetheless believe the methodology
described here is a promising approach.

 Where the non-technical brand manager
seeks to replace specific application
resources; an MSO, user agent or backend

2010 Spring Technical Forum Proceedings - Page 362

system would need to replace whole
components or methods calls within the
application in order to achieve UI consistency
across the plant or interoperability with
backend systems, the user agent or other
software on the set top box. For example,
specific method calls to set DVR recordings
or perform VOD telescopes may vary
depending on the particulars of the guide,
DVR or VOD system. Similarly, in the
interest of uniformity, MSOs may seek to
standardize navigational paradigms or such
things as button labels, placement and on-
click behaviors.

 This is achievable at build time, whereby
sets of pre-established blocks of source code,
representing the unique, desired method calls
and UI components are compiled into the
application. Again, this is fundamentally a
build time, find and replace mechanism not
unlike the system we have described above.
We believe, furthermore, that a well defined,
standardized naming convention at the source
code level would accommodate these needs.
Application developers would indicate such
replaceable blocks of code with naming
conventions such as:

• templateItem-ConfirmationScreen
• templateItem-VODTelescope
• templateItem-DVRSetting

CONCLUSIONS

 In order for EBIF to achieve critical mass
it is essential to reduce the time to market and
minimize the QC associated with individual
applications while maximizing the level of
creativity and flexibility in appearance of
customized instantiations. This is best
achieved by wide adoption of pre-approved
templates and strong validation in
customization tools. This aim must
additionally and necessarily encourage
innovation amongst a wide range of iTV
vendors and independent application

developers. This is the ecosystem from which
new, compelling features and revenue models
will be born and their applications will need
to be made readily available as core templates
within customization tools.

 The naming convention, XML schema and
XSLT transformations described here
represent the underpinnings of potential
standardizations, whereby application
developers could easily designate
“templatizable” aspects of their applications
in a manner in which compilers and
customization tools could reliably ingest,
parse and process them. By implementing
this in an open standard approach as presented
here, authoring tools are decoupled from
customization tools such that discrete
components of the overall value chain become
truly interoperable.

FUTURE WORK

Direct support in authoring tools

 The XSLT used in this reference
implementation to generate the template
definition XML assumes that the TVWorks
XDK is used as the authoring tool. While the
general technique is theoretically agnostic to
the particular XML authoring syntax, the node
inspection logic within the XSLT is specific
to the TVWorks MAX syntax.

 This is only required to automatically
generate a template definition XML file. The
template definition XML itself is its own,
standalone data model such that the XPath
expressions and constraint definitions can be
applied to any underlying XML based source
syntax.

 Ultimately, our view is certainly that EBIF
authoring tools would intrinsically generate
such template definition files and there would
not be a requirement for the template toolset
to generate one.

2010 Spring Technical Forum Proceedings - Page 363

Validating color palettes and graphics

 Color palettes are defined in the EBIF
source code and all graphics included in the
application are confined to those defined
colors. The methodology described here
allows a non-technical person to manipulate
the underlying color palette and provide
custom graphics. There exists potential
conflict and limitations where an author might
have a “core graphic” which must be
preserved in all instantiations and the
customizer finds the remaining colors cannot
accommodate their desired graphic. The
symptom is more pronounced on low-end
environments, limited to sixteen colors.

 Conventions surrounding graphics and
color palettes should be explored. In a
sixteen color environment things are clearly
highly constrained, but it should be possible
for an application author to provide and define
(in the template definition XML) an
acceptable set of potential palettes and any
corresponding “core graphics.” In the richer
256 color palettes the symptom is greatly
alleviated and the solution is potentially as
simple as earmarking a conventional set of a
certain number of colors (64 or 128) as
customizable.

Validation and Instantiation via Web Services

 In our reference implementation we have
used XSLT to inspect a set of EBIF source
documents for particular naming conventions
and node patterns. We did this in order to
auto generate normalized template definition
files in lieu of them being created by
authoring tools. Whether or not authoring
tools implement the schema, the inspection
technique itself appears useful with regards to
potentially automating some basic tests. For
example, source code could be dynamically
inspected using similar XSLT scripts for valid
organization IDs, appropriate calls to
terminate() methods, approved VOD handlers,

correct HTTP POST parameters, allowable
remote control keys, etc. These are examples
of any number of scripted tests which could
be used to perform automated validation
based on an inspection of source syntax.

REFERENCES

 [1] T. Bray et al, Extensible Markup
Language (XML) 1.0, W3C
Recommendation, November 2008
http://www.w3.org/TR/2008/REC-xml-
20081126/

 [2] J. Clark XSL Transformations (XSLT)
1.0, W3C Recommendation, November 1999
http://www.w3.org/TR/xslt/

 [3] J. Clark and S. DeRose, XML Path
Language (XPath) 1.0, W3C
Recommendation, November 1999
http://www.w3.org/TR/xpath/

 [4] H. Thompson et al, XML Schema Part
1: Structures, W3C Recommendation,
October 2004
http://www.w3.org/TR/2004/REC-
xmlschema-1-20041028/

 [5] P. Biron and A. Malhotra, XML
Schema Part 2: Datatypes, W3C
Recommendation, October 2004
http://www.w3.org/TR/2004/REC-
xmlschema-2-20041028/

HITS and other marks used are trademarks or
registered trademarks of Comcast. All other
product or service names are the property of
their respective owners.

2010 Spring Technical Forum Proceedings - Page 364

