Profiling Microwave Paths Using a Microcomputer and Printer

Marvin H. Mason, Jr., Staff Engineer

MetroVision, Inc., Atlanta, Georgia

ABSTRACT

With the advent of metropolitan CATV systems utilizing expanded bandwidth, the area covered by a single headend is reduced. Consequently, to cover the required area, sub-headends or hubs are established. Microwave radio (particularly AML) is one of the more cost effective ways to transport signals to hubs. However, in most metropolitan areas, several paths must be considered before a final selection can be made. The path profile is perhaps the most tedious task of the preliminary engineering, taking one to two hours of an engineer's time per path. The BASIC computer program described uses a microcomputer with 16 K bytes of memory and a DOT MATRIX printer to generate path profiles in minutes rather than hours.

INTRODUCT ION

Faced with the task of determining the feasibility of inter-connecting several widely spaced communities in a major metropolitan market with AML microwave radio, I quickly determined that no less than twelve path profiles would be needed to make an informed decision. The work was an obvious task for the engineering department's Radio Shack computer. Since at that time I had litt1e programming experience, I made a call to Lorri Kauffman, Application Engineer, at Hughes Microwave who provided a program that calculated earth curvature and Fresnel Zone clearances. Lorri offered the Hughes plotter program but we did not have a plotter and I felt the job should be done with existing resources.

Although calculating the clearance heights was quicker, the manual plotting of the profiles on graph paper continued to be drudgery of the worst sort. A remembered converstion with the boss about plotters and a close inspection of the printer sitting idly in the corner quickly brought
forth the realization that a printer, after all, was a course plotter with a funny pen.

```
Checking the printer's character set re-
vealed that graphicis could indeed be coaxed from it with a few LPRINTCFR\$ statements. With Lorri's program as a sound foundation \(I\) finally emerged from the quagmire of the BASIC language with the program described in this paper.
```

I have adapted the program to operate with two printers and have no reason to doubt that others could not be incorporated into the program. The program listed is for the Okidata Microline 33A printer and Radio Shack Level II BASIC. The Radio Shack model VI printer was also adapted. Tables 1 \& 2 1ist the printer character codes and corresponding characters used in the program.

TABLE 1
MICROLINE 93 A

$\frac{\operatorname{cod}}{192}$	CHARACTER量	LSE LEFT VERTICA GyIS
176	墹	LEfT VERETCAL AXIS
1600	4	CET VERTICAL ALEE
$15:$	\%	ETGHT VERTIDA MXIE
3 B	m	ashe vertipam ax
$\square 25$	\%	RIGHT VErtacal pxis
1.421	\pm	FRes Chnpacrer
166	\%	TREE SHARAETEA
179	m	TREE ChARAETER
157	p	TREE MHARACTER
149	+	HORIZONTAL FXIS

TABLE 2
RADIO SHACK MODEL VI

CODE	CHARACTER	LSE
二曲	t	VERTICAL AXIS
24.	-	VERTICAL AXIS
26.5	\perp	IEFT UERTICAL AXIS
$\cdots 4$	T	RTEHT VERTICAL AXIS
237		TPEE EDDY
245	1	HORIZONTAL AXIS

OPERATION OF THE PROGRAM

Using the program to create a path profile is simple. You draw a path centerline on a 7.5 minute map in the same manner as a manual plot, check the proposed path for obstructions, calculate or measure the distance between the transmit and receive locations, decide on the spacing for the intermediate points and list ground elevations at transmit, receive and intermediate points. Maximum possible tower or antenna mounting heights should be selected next. Refer to a sea level refractivity chart and determine the " K " factor for your location. Using this value for "K" is recommended as it most closely represents the earth curve plus the bending of the radio "beam" due to climatic conditions. However, the program allows you to check the profile with different values of "K" so a worse case of $K=2 / 3$ may be used initially, and refined later.

Once you have completed the above steps the program is simple to operate. Enter the information when the program prompts as shown in figure 1. Your profile will be printed in the format shown in figure 2.

straight edge to find the critical points and if you have a viable path. Figure 3 depicts a completed profile showing earth curvature, ground height, tree height and fresnel clearance. The two paths shown represent two possible antenna mounting locations on each tower.

PROGRAM DESCRIPTION

The program is listed in Radio Shack Level II BASIC at the end of the paper. The comments included in brackets () are not part of the program and should not be entered when you load the program. To change the scale of the plot, line 40 , variables VS and $H S$ would have to be reset. If you use several scales, you may wish to change this line to:
40 INPUT "VERTICAL SCALE"; VS
:INPUT "HORIZONTAL SCALE"; HS
To adapt the program to another printer lines $470,480,510,530,540,650,660$, 680 and 690 will have to be changed to include the unique printer character and control codes. For instance, for the Radio Shack Model VI printer line 470 is changed to:
$470 \mathrm{Bs}=\operatorname{CHRs}(250)+\operatorname{CHRs}(241)+\operatorname{CHRs}(248)$ + CHRs(241)

Table 2 provides a description of this printer's characters. A profile using the Radio Shack Model VI printer is shown as figure 4.

Formulas used to calculate earth curvature and Fresnel Zone are found in 1ines 240 and 250 . In ordinary form they are:

Earth Curvature

$$
\mathrm{h}=(\mathrm{d} 1 \mathrm{X} \mathrm{~d} 2) / 1.5 \mathrm{~K}
$$

Where h is earth curvature in feet, d1 is distance from the transmitter in miles, dz is distance from the receiver in miles and K is the factor for the curvature of the earth. $K=1$ is the true curve of the earth, $K=$ infinity is a flat earth, $K<$ 1 is the case when the radio beam bends away from the surface and $K>1$ is the case when the radio beam bends toward the surface.

Fresnel Zone

$$
F 1=72.1 \sqrt{\frac{\mathrm{~d} 1 \times \mathrm{d} 2}{\mathrm{~F} \times \mathrm{D}}}
$$

Where $F 1$ is the first Fresmel Zone in feet, dl is distance from the transmitter in miles, d2 is distance from the receiver in miles, F is frequency in $G H z$ and D is path length in miles.

FIGURE 4
Radio Shack LINE PRINTER VI

PROGRAM LISTING

The notes in the program listing explain the purpose of the lines．Adapting the program to other types of BASIC is beyond the scope of this article．However，it should present no problem for microcom－ puters that use Microsoft＂BASIC＂．The command＂PRINT USING＂may be unique to Radio Shack but can be easily replaced with＂PRINT TAB＂statements．

10 REM＂Computerized fath protile sising a printer as a piotter＂
20 CLS（clear the sureen）
30 CLEAFEDW Giear 2000 brtes for string space）
40 $v 5=2.5$
：HS＝ 10 \｛USJ vertical stale：Used as a diviser in Gabedlating the number of feet to be
displaved as one Eharacter． spare on the printer．
［HS］horizontal seale：Used as a multiplier in calculat－ ing the fration of a mile to be displared as one ine feed $1 / H S$（ie．if $H S=10$ then the scale is al mile to ane line feed．．）．
50 PRINT a 200 ＂Microwave Path Clearance －almiations＂
60 LINETNFUT＂Transmitter Locatagn＂TL\＆
70 INPUT＂Transmitter Tower Height（to nearest 5 feet）＂：TT
BO INPUT＂Path Length in Milez＂；Pl
90 LINEINPUT＂Receiver Logation＂？RLo
100 INPUT＂Receiver Tower Height（to nearest 5 feet．＂\＃RT
110 INPUT＂Distance Between Foints＂；DD
$1201=\operatorname{INT}(P L / D D)$［ETJ Gounter ased to set spane between calzulation points）
$130 \mathrm{IF} P \mathrm{P} / \mathrm{DD}=\mathrm{I}$ THEN $\mathrm{J}=\mathrm{I}$
ELSE J＝I＋ 1 This ine deletes the additional spare rreated on the graph if the path length is integraly divi－ sible br［DD］
$140 \mathrm{DIM} \operatorname{GH}(J), G H \$(J), G L(J), E C(J), E C \neq(J)$, EL（J），FC（J），FC末（J），FL（J），DT（J） \｛DIMENSIONS［VARIABLES］
［GH］Ground height； ［EC］earth gurvature： ［FC］fresnel zone Elearance：［DT］ distance from the transmitter：
［GHz］ground height
display charaster：
［Gk］temporary variable used in Galculating ［GH丰］from［GH］；
［ELJ temparary variabie for earth curvature；
［FL］temporary variable for fresnel zone；
［EC乎］earth Eurvature charazter；
［FCa f freshel zone
rhararter）
500 FOR $x=0$ TO J llines 150 to 190 are a
loop for jngisting ground height at the intervar rou desire to create the path profile．）
$160 \operatorname{DT}(x)=D D * X$
170 IF $\mathrm{DT}(\mathrm{X}\}) \mathrm{PL}$ THEN DT $(X)=P L$
1 EO FRINT＂Ground Level a＂＂DT（X）；＂miles $=$＂；：INPUT GH（X）
190 NEXTX
200 INPUT＂＇K＇fartor From Chart＂ib
210 INPUT＂Fresnel Zane Fantor（a or ． 6 ） ＂： FF
220 INPUT＂Tree Height＂；TH
230 FOR $x=0$ TO J thas inof uarolates
the earth Eurvature and
reshel zone bearance
from the rormulae in
the text．
$240 \mathrm{EC}(x)=\mathrm{DT}(x) *(\mathrm{PL}-\mathrm{DT}(x)) /(\mathrm{L} . \mathrm{S} * \mathrm{~K})$
$250 \mathrm{FC}(x)=72.1 * F F=50 \mathrm{~F}(\mathrm{DT}(x) *$
$(P L-D T(X)) /(12,7 * P L))+10$
260 NEXTX
280 LH＝ 15000 ｜lines 280－340 Galculate
the buest ground height
and sets that figure as a
baseline for the grafh．The
variable is［LH］\＆［tid．
［LT］is temporary．）
$290 \mathrm{FOR} \mathrm{x}=0 \mathrm{TO}(\mathrm{J}-\mathrm{t})$
300 IF GH（X）$=\mathrm{GH}(x+1)$ THEN $L T=G H(x+1)$ ELSE LT $=$ GH（X）
उID IF LTG $=$ LH THEN LH $=$ LT
320 NEXTX
$330 \mathrm{LH}=\mathrm{LNT}(\mathrm{LH} / 10) * 10$
$340 \mathrm{LH}=\mathrm{LH}$
 convert［GHI，EFC3 and ［ECJ to stale and reates the display strings．

370 NEXTX
$410 \mathrm{FOR} X=4 \mathrm{TO} \mathrm{I}$
$420 \mathrm{EL}(x)=\mathrm{XT}(\mathrm{EC}(X) / \mathrm{V})+.79)$
$430 E C(x)=\operatorname{STRING}(E L(x)$ ，＂\＃＂）
$440 F L(X)=\operatorname{TNT}(F C(X) / V E)$
$450 \mathrm{FE}(x)=5 \mathrm{CRTG}(F \mathrm{C}(x), 4 \%$ ）
460 NEXTX

+CHP （176）
$480 \mathrm{C}=\mathrm{CHR}(151)+\mathrm{CHR}(1 \mathrm{~J})+\mathrm{CHRt}(\mathrm{S} 5)$
 border Enararters between tis marks．Ther must te ereated from the printery －hareoter set．）


```
660 LPRINT CHR$(149);
    :_PRINT USING "##. #";DT(X);
    :LPRINT EC$(X);GH$(X);TH&;FC覀(X)
670 NEXTX
680 FOR X = 1 T0
((INT((DT (J)-DT(J-1))*HS))-1)
    :LPRINT CHR$(149)
    :NEXTX Iline 6B0 prints the
                                    space to the receive
                                    site ,)
690 LPRINT CHR$(149);USING "##.#";PL;
    :LPRINT GH$(J);RT${Tine 690 prints the
                rereive site.)
700 FOR X = 1 T0 32
    :LPRINT C$;
    :NEXTX
    :LPRINT C& {1ines 70D and 720 print
                the right vertical scale.)
710 LPRINT" ";
    :LPRINT USING "####";LI;
    :FOR X = 1 TO 31
    :LI = LI+(VS*4)
    :LPRINT USING "####";LI;
    :NEXTX
    :LPRINT " "
    :LPRINT" "
720 FOR X = DTO J
    :LPRINT USING "a ##.###mi.
    HAMSL = ##,### ft. EC = ###,## ft.
    FC= ##,### ft, ":DT(X),GH(X),EC(X),
    FC(X)
    :NEXT X Iline 720 prints the data used
                to Ereate the graph;)
730 LPRINT CHR&(12){form feed}
740 CLS
        :PRINT O20D,
    "PROFILEE COMPLETEE!!
    If rou want to run another profile for
    this path trpe 'Y' ; Otherwise t`pe
    'N' = Press<ENTER`'*
750 INPUT A$
760 IF A生 = "Y" THEN GOTO 200
770 IF A$ = "N" THEN END
    ELSE PRINT "Ansuer 'Y' or 'N' gnly."
    :GOTO 750
```


REFERENCES

1. "Engineering Considerations for Microwave Communication Systems," GTE Lenkurt Incorporated, San Carlos, California, 1975.
2. Roger L. Freeman, "Telecommunication Transmission Handbook, 2nd Edition," John Wiley and Sons, New York, N.Y., 1981.

ACKNOWLEDGEMENTS

I am grateful to Mr. Richard C. Hickman, Vice President, Engineering, MetroVision, Inc. for suggesting this paper be written and for his support in its preparation. I also wish to acknowledge the aid of Ms. Lorri Kauffman of Hughes Microwave Inc. who supplied the original program from which this was adapted.

